Official UIME English Language Journal of:
Aesthetic and Anti-Aging Medicine Society of South Africa
Aesthetics Medical Society of Uruguay
Aesthetic Medicine Society of Venezuela
Algerian Society of Aesthetic Medicine
American Academy of Aesthetic Medicine
Argentine Society of Aesthetic Medicine
Association of Aesthetic and Antiaging Medicine of Guatemala
Belgian Society of Aesthetic Medicine
Brazilian Association of Aesthetic Dermatology
Canadian Association of Aesthetic Medicine
Chilean Association of Aesthetic Medicine
Colombian Association of Aesthetic Medicine
Croatian Society of Aesthetic Medicine
Ecuadorian Society of Aesthetic Medicine
French Society of Aesthetic Medicine
Georgian Society of Aesthetic Medicine
Indian Society of Aesthetic Medicine
Italian Society of Aesthetic Medicine
Kazakhstan Association of Aesthetic Medicine and Plastic Surgery
Mexican Scientific Society of Aesthetic Medicine
Moroccan Society of Aesthetic Medicine
Polish Society of Aesthetic and Anti-Aging Medicine of Polish Medical Society
Portuguese Society of Aesthetic and Anti-Aging Medicine
Scientific Association of Aesthetic Medicine of Peru
Society of Aesthetic Medicine in Turkey
Spanish Society of Aesthetic Medicine
Swiss Society of Aesthetic Medicine
Ukrainian Society of Aesthetic Medicine

www.aestheticmedicinejournal.org
Contents

Original Article
Stem cell growth and differentiation factors from Zebrafish embryo and their role as epigenetic regulators in hair regeneration: results after their transdermal administration by cryopass laser treatment
Pier Mario Biava, Enrico Bonizzoni, Sofia Zafiropoulou, Antonino Laudani, Fabio Burigana, Irwin Burian Lissoi, Torello Lotti pag 11

Original Article
Use of a Vibration tool to reduce pain from growth factors injection in the treatment of androgenetic alopecia: a randomized controlled trial
Marco Toscani, Pasquale Fino, Valentina Sorvillo, Andrea Pierro, Francesca Romana Grippaudo pag 20

Original Article
Evaluation of the anti-ageing efficacy of Hilow Haenkenium cream in healthy woman
Enza Cestone, Gilberto Bellia, Vincenzo Nobile, Andrea Maria Giori, Andrea Alimonti, Monica Montopoli pag 25

RESEARCH

Original Article
Photoactivation of Autologous Materials with a New Reliable, Safe and Effective Set-Up
Hernán Pinto pag 34

SPECIAL TOPIC

Review
Emerging Goals of Aesthetical Medicine in Hyperpigmentary Skin: an Oncological Perspective
Aurea Lima, Ana Ferreira Castro, Rodrigo Ayoub pag 39

Obituary
pag 49

Courses and Congresses pag 50
Guidelines for Authors

Aesthetic Medicine is a multidisciplinary Journal with the aim of informing readers about the most important developments in the field of Aesthetic Medicine.

Submission of manuscripts
All articles in their final version - completed with name, surname, affiliation, address, phone number and e-mail address of the author(s) - must be sent in word format to the Editorial Committee at the following e-mail address: aemj@aestheticmedicinejournal.org. Manuscripts must be written in English, and authors are urged to aim for clarity, brevity, and accuracy of information and language. All manuscripts must include a structured abstract. Authors whose first language is not English should have their manuscripts checked for grammar and stylistic accuracy by a native English speaker.

Manuscript specifications

Title page
The title page should include:
- The name(s) of the author(s)
- A concise and informative title
- The affiliation(s) and address(es) of the author(s)
- The e-mail address, telephone and fax numbers of the corresponding author
- Include a short title (not to exceed 30 characters in length, including spaces between words) for use as a running head
- The authors must disclose any commercial interest that they may have in the subject of study and the source of any financial or material support

Abstract
The length of the abstract should be no more than 250 words and should include the following headings: Background, Aim, Methods, Results, Conclusions

Keywords
Up to six keywords should be listed and separated by a comma (please, verify keywords on MeSH).

Manuscript categories

Original article
The manuscript should be organised in the following sections:
- Structured Abstract. The length of the abstract should be no more than 250 words and should include the following headings: Background, Aim, Methods, Results, Conclusions
- Introduction
- Materials and Methods
- Results
- Discussion and Conclusions
- Acknowledgments
- Conflict of interest
- Reference list
- Legends (max 10)
The manuscript must not exceed 4000 words and 50 references.

Review
This type of article uses Unstructured Abstract. It must not exceed 4000 words and includes figures and tables (max 15), legends, and up to 200 references.

Mini-review
This type of article uses Unstructured Abstract. It must not exceed 2000 words and includes figures and tables (max 12), legends, and up to 100 references.

Case Report
This type of article uses Unstructured Abstract. It must not exceed 1500 words and includes figures and tables (max 6), legends, and up to 30 references.

Style

- Use a normal, plain font (e.g., 12-point Times Roman) for text
- Double-space the text
- Use italics for emphasis
- Use the automatic page numbering function to number the pages
- Do not use field functions
- Use tab stops or other commands for indents, not the space bar
- Use the table function, not spreadsheets, to make tables

Acknowledgments
The authors declare that they have no conflict of interest.
If potential conflicts of interest do exist, the authors should provide details (see below) for each affected author in a note in a separate DISCLOSURE section of the manuscript document text, before the list of references.

Conflict of interest disclosure
Conflicts of Interest need to be explicitly defined before any manuscript can be considered for publication.

References
References must be cited consecutively in the text as superscript numerals and listed on a separate sheet in numerical order at the end of the text. The references must be cited according to the AMERICAN MEDICAL ASSOCIATION (AMA) CITATION STYLE. For this reason, they must contain author's surname and name initial, the original title of the article, the title of the journal (abbreviated and in italic), the year of publication, the number of the volume, the number of the first and last page.

IV
General rules from the 10th edition

- Items are listed numerically in the order they are cited in the text
- Include up to 6 authors
- For more than six, provide the names of the first three authors and then add et al
- If there is no author, start with the title
- Periodicals (journals, magazines, and newspapers) should have abbreviated titles; to check for the proper abbreviation, search for the Journal Title through [LocatorPlus](https://www.nlm.nih.gov) at the National Library of Medicine website

<table>
<thead>
<tr>
<th>Citation Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspaper article - in print*</td>
<td>Wolf W. State’s mail-order drug plan launched. Minneapolis Star Tribune. May 14, 2004:1B.</td>
</tr>
</tbody>
</table>

Citing sources within your paper

Unlike APA or MLA, you will not use the author's last name for the in-text citations. Instead, you will number each instance when you are referencing an article. The order of numbering will be contingent on the order in which you use that reference within your paper. In the example below, the first article referenced is given the number one in superscript. In the References section, you will find the matching article listed as number 1.

<table>
<thead>
<tr>
<th>Example Article</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>In-Text Citation Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARGE INCREASES IN AMERICANS’ CONSUMPTION OF sugar-sweetened beverages (SSB) have been a topic of concern. Between 1977 and 2002, the intake of “caloric” beverages doubled in the United States, with most recent data showing that children and adults in the United States consume about 172 and 175 kcal daily, respectively, from SSB. It is estimated that SSB account for about 10% of total energy intake in adults. High intake of SSB has....</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References Section Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

Use commas to separate multiple citation numbers in text, like you see between references 2 and 3. Unpublished works and personal communications should be cited in the text (and not on the reference list). Superscript numbers are placed outside periods and commas, and inside colons and semicolons. When citing the same source more than once, give the number of the original reference, then include the page number (in parentheses) where the information was found. See pages 41-44 of the AMA Manual of Style for more information.

References

Images and Tables
All images within the word file must be numbered progressively and accompanied by the corresponding captions, with precise references in the text. Moreover, the images should be sent separately and in HD (at least 300 Dpi, in TIFF or JPEG format). Graphs and charts are progressively numbered and accompanied by the corresponding captions, with precise references in the text. They must be sent separately, preferably in Excel format.
It is necessary to give the authorization to reproduce already published materials or to use people portraits, in case they are recognizable. The Authors has full, exclusive and personal responsibility and respect for the rules protecting privacy, originality and content (text, images) of the articles.

Artwork instructions
Permission
Photographs in which a person is identifiable must either have the face masked out, or be accompanied by written permission for publication from the individual in the photograph. Authors wishing to include figures, tables, or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) for both the print and the online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors. Please be informed that we will not be able to refund any costs that may have occurred in order to receive these permissions from other publishers. Please be aware that some publishers do not grant electronic rights for free (an example is Thieme Publishers). In these cases we kindly ask you to use figures from other sources.
Publication Ethics and Publication Malpractice Statement

Aesthetic Medicine undertakes to defend the rules of ethical behavior in every stage of the process by adopting and promoting the standards set by Code of Conduct and Best Practice Guidelines for Journal Editors.

Duties of Editors

Publication decisions
The editor of a peer-reviewed journal is responsible for deciding which of the articles submitted to the journal should be published. The editor will evaluate manuscripts without regard to the authors’ race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy. The editor may be guided by the policies of the journal’s editorial board and constrained by such legal requirements as shall then be in force regarding libel, copyright infringement and plagiarism.

Confidentiality
The editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers or the publisher, as appropriate.

Disclosure and conflicts of interest
Unpublished materials disclosed in a submitted manuscript must not be used in an editor’s own research without the express written consent of the author. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. When the editorial board is notified or discovers a significant problem regarding errors/ inaccuracies, undisclosed conflict of interest, plagiarism, in a published article, the editorial board will promptly notify the corresponding author and the publisher and will undertake the necessary actions to clarify the issue and in case of need to retract the paper or publish an Erratum, following the COPE Guidelines.

Involvement and cooperation in investigations
An editor should take reasonably responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper, in conjunction with the publisher (or society). Such measures will generally include contacting the author of the manuscript or paper and giving due consideration of the respective complaint or claims made, but may also include further communications to the relevant institutions and research bodies, and if the complaint is upheld, the publication of a correction, retraction, expression of concern, or other note, as may be relevant. Every reported act of unethical publishing behaviour must be looked into, even if it is discovered years after publication.

Duties of Reviewers

Contribution to editorial decisions
Peer review assists the editor in making editorial decisions and through the editorial communications with the author may also assist the author in improving the paper. Peer review is an essential component of formal scholarly communication, and lies at the heart of the scientific endeavour. Aesthetic Medicine shares the view of many that all scholars who wish to contribute to publications have an obligation to do a fair share of reviewing.

Promptness
Any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse him/herself from the review process.

Confidentiality
Any manuscripts received for review must be treated as confidential documents. They must not be shown to or discussed with others except as authorised by the editor.

Standards of objectivity
Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Referees should express their views clearly with supporting arguments.

Acknowledgement of sources
Reviewers should identify relevant published work that has not been cited by the authors. Any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. A reviewer should also call to the editor’s attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge.

Disclosure and conflict of interest
Unpublished materials disclosed in a submitted manuscript must not be used in a reviewer’s own research without the express written consent of the author. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies or institutions connected to the papers.

Duties of Authors

Reporting standards
Authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. A paper should contain sufficient detail and references to permit others to replicate the work. Fraudulent or knowingly inaccurate statements constitute unethical behaviour and are unacceptable. Review and professional publication articles should also be accurate and objective, and editorial ‘opinion’ works should be clearly identified as such.

Data access and retention
Authors may be asked to provide the raw data in connection with a paper for editorial review, and should in any event be prepared to retain such data for a reasonable time after publication.
Originality and plagiarism
The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others, that these have been appropriately cited or quoted. Plagiarism takes many forms, from “passing off” another's paper as the author's own paper, to copying or paraphrasing substantial parts of another's paper (without attribution), to claiming results from research conducted by others. Plagiarism in all its forms constitutes unethical publishing behaviour and is unacceptable.

Multiple, redundant or concurrent publication
An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behaviour and is unacceptable. In general, an author should not submit a previously published paper for consideration in another journal.

Acknowledgement of sources
Proper acknowledgment of the work of others must always be given. Authors should cite publications that have been influential in determining the nature of the reported work. Information obtained privately, for example in conversation, correspondence, or discussion with third parties, must not be used or reported without explicit, written permission from the source. Information obtained in the course of confidential services, such as refereeing manuscripts or grant applications, must not be used without the explicit written permission of the author of the work involved in these services.

Authorship of the paper
Authorship should be limited to those who have made a significant contribution to the conception, design, execution or interpretation of the reported study. All those who have made significant contributions should be listed as co-authors. Where there are others who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. The corresponding author should ensure that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.

Hazards and human or animal subjects
If the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. If the work involves the use of animal or human subjects, the author should ensure that the manuscript contains a statement that all procedures were performed in compliance with relevant laws and institutional guidelines and that they have been approved by the appropriate institutional committee(s). Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

Disclosure and conflicts of interest
All authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. All sources of financial support for the project should be disclosed. Examples of potential conflicts of interest which should be disclosed include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. Potential conflicts of interest should be disclosed at the earliest stage possible.

Fundamental errors in published works
When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper. If the editor or the publisher learns from a third party that a published work contains a significant error, it is the obligation of the author to promptly retract or correct the paper or provide evidence to the editor of the correctness of the original paper.
INTERNATIONAL SOCIETIES OF AESTHETIC MEDICINE

FOREIGN ACADEMIES OF MEDICINE

AND NATIONAL SOCIETIES OF AESTHETIC MEDICINE
Stem cell growth and differentiation factors from Zebrafish embryo and their role as epigenetic regulators in hair regeneration: results after transdermal administration using cryopass laser treatment

Pier Mario Biava1, Enrico Bonizzoni2, Sofia Zafiropoulou2, Antonino Laudani3, Fabio Burigana4, Irwin Burian Lissoi4, Torello Lotti5

1Scientific Institute of Research and Care Multimedica, Milano
2Centro Medico Turati Medical Center, Piazza Cavour 1, Milano
3Prometeo Medical S.r.L. Via Paolo Emilio 34, Roma
4AMEC (Medicine and Complexity Association) Trieste
5Institute of Dermatology, University Guglielmo Marconi, Roma

Abstract
Previous studies conducted over many years in our laboratories on zebrafish embryos, have enabled the identification of precise moments of stem cell differentiation in which a large number of genes switch on and off, a sign that the genome is undergoing substantial changes in gene expression. Factors of the early developmental stage of zebrafish embryo were able to regulate the stem cell expression of multipotency, enhancing the stemness genes Oct-4, Sox-2 and c-Myc. In addition to affecting stemness genes, which maintain stem cell identity, the occurrence of these factors in a primarily multiplicative stage also elicited the transcriptional activation of two major mechanisms capable of opposing stem cell senescence, including the gene expression of TERT, the catalytic subunit of telomerase, and the transcription of Bmi1, a Trithorax family of repressors which act as essential factors for the self-renewal of adult stem cells, and as key telomerase-independent repressors of cell aging. On the contrary, molecules taken during differentiation events are able to reprogram pathological stem cells.

On the basis of studies on stem cell rejuvenation, a differentiation of many studies was made. In this study we present the clinical results of twenty men aged between 46 and 67 (average age 57) with androgenetic alopecia. They were treated with Stem Cell Growth and Differentiation Factors from Zebrafish embryo using cryopass-laser treatment for transdermal administration.

The materials and methods used to prepare the Zebrafish extracts and the use of Cryopass Laser (5) have already been described. Results: All the patients demonstrated an initial regeneration of hair in the form of a soft fleece after the first treatment. This regeneration was consolidated with subsequent treatments and after about 10 treatments, the appearance of hair was comparable to adult and pigmented hair. At the six months check, the number of hairs in examined subjects was almost unchanged and there was a general improvement in the number and in the volume of the stem.

The treatment did not have any adverse effect and was very well accepted by patients, who were satisfied with results obtained.

Keywords
Alopecia, Zebrafish Embryo, Stem Cell, Epigenetic, Hair Regeneration, Cryopass® Laser

Received for publication January 23, 2020; accepted March 11, 2020 - © Salus Internazionale ECM srl - Provider ECM no 763

Correspondence

Pier Mario Biava, MD

E-mail: piermario.biava@gmail.com
Introduction

Previous studies conducted over many years in our laboratories on zebrafish embryos, have enabled the identification of precise moments of stem cell differentiation in which a lot of genes switch on and off, a sign that the genome is undergoing substantial changes in gene expression. These studies on zebrafish embryos have enabled us to identify and choose some moments in which important cell differentiation events take place and other moments just before the middle blastula-gastrula, in which multiplication events and totipotent embryonic stem cells are prevalent. The substances present in these moments before the start of cell differentiation are significant in activating important genes responsible for counteracting human stem cell senescence. On the contrary, substances present during the stages in which cell differentiation events take place are not only able to differentiate normal stem cells, but also to reprogram pathological stem cells, like cancer stem cells, to a normal phenotype, or induce them to apoptosis. It was demonstrated that factors taken from zebrafish embryo just before the middle blastula-gastrula are a very effective tool for increasing multipotency stem cell expression, promoting both telomerase-dependent and telomerase-independent antagonists of cell senescence. In fact the factors of the early developmental stage of zebrafish embryo were able to regulate the stem cell expression of multipotency, enhancing the stemness genes Oct-4, Sox-2 and c-Myc. In addition to affecting stemness genes, which maintain stem cell identity, these factors taken in a primarily multiplicative stage also elicited the transcriptional activation of two major mechanisms capable of opposing stem cell senescence, including the gene expression of TERT, the catalytic subunit of telomerase, and the transcription of Bmi1, a Trithorax family of repressors which act as essential factors of the early developmental stage of zebrafish embryo enabled us to study all the different functions of the epigenetic code, but it is possible to provide epigenetic information for determining the fate of normal and pathological stem cells.

Research into the possibility of regulating the gene-expression of normal and pathological stem cells using factors taken during all phases of the organogenesis of Zebrafish embryo enabled us to study all the different functions of the epigenetic code. First of all it was possible to study the composition of the substances contained in different moments of stem cells multiplication and differentiation. These substances are proteins with a low molecular weight (98%) and nucleic acid content (2%). The different composition of the proteins taken in the five stages of cell differentiation was analyzed on a one-dimensional Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis (SDS-PAGE) (Figure 1); all the proteins present at the beginning of the cell differentiation process of Zebrafish embryo (50% of epiboly) were then identified by using a liquid chromatography-mass spectrometry (LC-MS/MS) analysis, following the in-gel digestion procedure (Figure 2). We listed the identified proteins with the correspondent NCBI accession number, the score and isoelectric point (pl). Individual ions scores >36 indicate identity or extensive homology (p<0.05). Identified proteins include multiple forms of yolk protein vitellogenin, heat shock protein (e.g. HSP8 and HSP70) and other previously undescribed proteins. These proteins are implicated in many pathways, including signaling cell cycle regulation, protein trafficking, chaperoning, protein synthesis and degradation. Using these factors taken in different specific moments of organogenesis, it becomes possible to correct the behavior not only of cancer stem cells, but also of cells involved in degenerative diseases. It also becomes possible to regulate the expression of genes which play a major role in the prevention of aging and tissue regeneration: these results are at the basis for the in vivo approach of this study. Specifically, the scope of this study is to verify the possibility of promoting tissue regeneration by bypassing stem cell transplantation. In this study we describe the results of 20 men with androgenetic alopecia using the transdermal administration of Stem Cell Growth and Differentiation Factors coupled with Cryopass Laser Treatment.
<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Score</th>
<th>MW (Da)</th>
<th>pI</th>
<th>Coverage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitellogenin 1 precursor</td>
<td>1108</td>
<td>150308</td>
<td>8,68</td>
<td>19</td>
</tr>
<tr>
<td>Vitellogenin 1</td>
<td>1039</td>
<td>149825</td>
<td>8,74</td>
<td>21</td>
</tr>
<tr>
<td>Novel protein similar to vitellogenin 1 (vg1)</td>
<td>913</td>
<td>149828</td>
<td>8,92</td>
<td>19</td>
</tr>
<tr>
<td>Novel protein similar to vitellogenin 1 (vg1)</td>
<td>835</td>
<td>150550</td>
<td>8,83</td>
<td>16</td>
</tr>
<tr>
<td>Vtg1 protein</td>
<td>780</td>
<td>116965</td>
<td>9,07</td>
<td>18</td>
</tr>
<tr>
<td>Novel protein similar to vitellogenin 1 (vg1)</td>
<td>762</td>
<td>149911</td>
<td>8,84</td>
<td>19</td>
</tr>
<tr>
<td>Novel protein similar to vitellogenin 1 (vg1)</td>
<td>745</td>
<td>147826</td>
<td>8,73</td>
<td>17</td>
</tr>
<tr>
<td>Zgc:136383 protein</td>
<td>720</td>
<td>124413</td>
<td>8,78</td>
<td>17</td>
</tr>
<tr>
<td>Vitellogenin 5</td>
<td>559</td>
<td>149609</td>
<td>8,77</td>
<td>13</td>
</tr>
<tr>
<td>Zgc:136383</td>
<td>402</td>
<td>28924</td>
<td>9,33</td>
<td>36</td>
</tr>
<tr>
<td>Vtg1 protein</td>
<td>345</td>
<td>36580</td>
<td>9,23</td>
<td>28</td>
</tr>
<tr>
<td>Vitellogenin 7</td>
<td>341</td>
<td>24490</td>
<td>8,37</td>
<td>40</td>
</tr>
<tr>
<td>Vitellogenin 4</td>
<td>334</td>
<td>31304</td>
<td>9,48</td>
<td>27</td>
</tr>
<tr>
<td>Vitellogenin 2 isoform 1 precursor</td>
<td>323</td>
<td>181208</td>
<td>8,70</td>
<td>11</td>
</tr>
<tr>
<td>Zgc:136383 protein</td>
<td>171</td>
<td>149328</td>
<td>8,93</td>
<td>9</td>
</tr>
<tr>
<td>Procollagen type I alpha 2 chain</td>
<td>169</td>
<td>147826</td>
<td>9,35</td>
<td>4</td>
</tr>
<tr>
<td>Vitellogenin 2</td>
<td>122</td>
<td>69906</td>
<td>7,84</td>
<td>8</td>
</tr>
<tr>
<td>Vitellogenin 3 precursor</td>
<td>117</td>
<td>140477</td>
<td>6,92</td>
<td>2</td>
</tr>
<tr>
<td>Vitellogenin 6</td>
<td>73</td>
<td>151677</td>
<td>8,84</td>
<td>4</td>
</tr>
<tr>
<td>Egg envelope protein ZP2 variant A</td>
<td>71</td>
<td>48194</td>
<td>6,04</td>
<td>5</td>
</tr>
<tr>
<td>Nucleoside diphosphate kinase-Z1</td>
<td>69</td>
<td>17397</td>
<td>7,77</td>
<td>14</td>
</tr>
<tr>
<td>Nucleoside diphosphate kinase 3</td>
<td>69</td>
<td>19558</td>
<td>7,68</td>
<td>7</td>
</tr>
<tr>
<td>Novel protein containing a galactose binding a Lectin domain</td>
<td>67</td>
<td>19245</td>
<td>9,33</td>
<td>13</td>
</tr>
<tr>
<td>Mitochondrial ATP synthase beta subunit-like</td>
<td>66</td>
<td>55080</td>
<td>5,25</td>
<td>4</td>
</tr>
<tr>
<td>Ppia protein</td>
<td>60</td>
<td>19745</td>
<td>9,30</td>
<td>13</td>
</tr>
<tr>
<td>HSC70 protein</td>
<td>58</td>
<td>71473</td>
<td>5,18</td>
<td>2</td>
</tr>
<tr>
<td>Heat shock protein 8</td>
<td>58</td>
<td>71382</td>
<td>5,32</td>
<td>4</td>
</tr>
<tr>
<td>Histone H2B 3</td>
<td>49</td>
<td>13940</td>
<td>10,31</td>
<td>11</td>
</tr>
<tr>
<td>Collagen, type I, alpha 1b precursor</td>
<td>46</td>
<td>137815</td>
<td>5,39</td>
<td>4</td>
</tr>
<tr>
<td>Ras homolog gene family, member F</td>
<td>46</td>
<td>24035</td>
<td>9,00</td>
<td>6</td>
</tr>
<tr>
<td>Tryptophan hydroxylase D2</td>
<td>45</td>
<td>55686</td>
<td>6,56</td>
<td>1</td>
</tr>
<tr>
<td>Zona pellucida glycoprotein 3.2 precursor</td>
<td>44</td>
<td>47365</td>
<td>4,92</td>
<td>2</td>
</tr>
<tr>
<td>Predicted: RIMS-binding protein 2-like</td>
<td>41</td>
<td>138659</td>
<td>5,86</td>
<td>0</td>
</tr>
<tr>
<td>Vtg3 protein</td>
<td>40</td>
<td>60622</td>
<td>6,32</td>
<td>2</td>
</tr>
<tr>
<td>Glutaredoxin 3</td>
<td>39</td>
<td>36541</td>
<td>5,18</td>
<td>11</td>
</tr>
<tr>
<td>Peptidylprolyl isomerase A, like</td>
<td>37</td>
<td>17763</td>
<td>8,26</td>
<td>7</td>
</tr>
</tbody>
</table>

Figure 2 - List of proteins present at the beginning of the Zebrafish embryo cell differentiation process (50% of epiboly) identified by using a liquid chromatography–mass spectrometry (LC-MS/MS) analysis, after the in-gel digestion procedure.
Material, Methods and Design of the Clinical Trial

Twenty men aged between 46 and 67 (average age 57) with androgenetic alopecia were treated with Stem Cell Growth and Differentiation Factors from Zebrafish embryo using cryopass-laser treatment (LASERICE Med. C.I.R.C.E. S.r.L., Magnago, Milan) for transdermal administration.

Patient inclusion Criteria:
a) all the patients were male and with androgenetic alopecia in the parietal zone
b) for the purposes of achieving a homogeneous group, all selected patients were aged between 46 and 67 years

Exclusion criteria:
a) Aged below 18
b) Women of any age
c) Males who had had an anti-hair loss treatment 6 months before Cryopass® laser treatment

Assessment of the degree of alopecia:
a) The Norwood scale IV and V type was used to evaluate the degree of androgenetic alopecia in the parietal zone and the number of hair grown per square centimeter was counted.

Criopass Therapy - (cryo laser forese) laser treatment
Criopass Therapy is a non-invasive transdermal drug delivery technique which is also called fortified laser cryo. It uses a particular mechanism in which the active ingredient is inserted in a special cryo-applicator (medical device) LASERICE GEL BASE N.1, containing a neutral gel, transparent to the laser source used, which acts as a support material for the active ingredient whose penetration is to be encouraged. The cryo-applicator into which the drug is inserted is then frozen at (-18°C); complete freezing usually occurs within 4-6 hours.

Once frozen, the cryo-applicator is used, coupled with Lasercimmed equipment, a medical device that essentially consists of two laser sources which transmit the energy necessary to excite the drug molecules and thus favor the transdermal transport of all medication molecules. The working principle of Criopass therapy is based on a physical process of exploiting kinetic energy, generated by the photons of a diode laser beam with a power of 50 mW and a wavelength of 635 nm, in order to convey drug molecules inserted in an active matrix (cryo-applicator), consisting of an inert gelled solution designed to disperse the solution of the drug that needs to be used. The cryo-applicator containing the drug is frozen at -18°C and coupled to the laser handpiece, ready for use (in accordance with protocols specified by the manufacturer). The passage of the drug occurs in a totallyatraumatic and painless way, fundamental characteristics for making the therapy more acceptable to the treated patient. The treatment takes place in two distinct phases.

1st phase: the frozen cryo-applicator containing the drug is connected to the laser handpiece and is positioned on the area to be treated until it has completely dissolved. If this operation were to take place with a non-frozen cryo-applicator, when a photon hits an electron of the outermost orbital of the molecules, the energy applied to the latter would cause the electron to jump to a higher yet more unstable energy orbital, meaning the electron would tend to return to the starting level by re-emitting a photon that caused the energy jump in the first place. Instead, at the temperature of use of the cryo-applicator frozen, -18°C, upon application of photonic energy using the laser handpiece, the return of the electron from the excited state to the fundamental one is observed at a much slower rate. When the laser beam crosses the frozen cryo-applicator, it encounters the drug molecules that are inserted within the crystalline lattice of the frozen gel; the photons hit the electrons of the drug molecules, causing an energy transformation.

In this condition of use, the appearance of a marked scattering effect due to the interaction between drug molecules and the photons used for excitation is observed in the cryo-applicator. This creates an energy exchange from the photon to the electron; energy stored in the form of potential energy is transferred to the ice / skin interface in the form of kinetic energy, enabling the release of the drug when the cryo-applicator reaches melting point, so that it passes through the skin membrane.

2nd phase: A second laser source (Laser scanner) is applied on the area previously treated with the laser handpiece, with a power of 50 mW and a wavelength of 635 nm (1st phase application). The laser beam passes through the skin and carries energy to the tissues in a selective manner, unleashing reactions ranging from vasodilatory action to interaction with inflammatory mediators, etc. Beneath the dermis, the system is essentially connective tissue and is the largest organ in the body. Despite its simplicity and ubiquity, a new interpretation has recently emerged regarding the presence of collagen in connective tissue, along with its structure and its functions.

It is considered a veritable “communication network”; a ubiquitous network with a tissue and organ support function due to its interconnection in the three directions of space. Thanks to the PG and GAG coating, the collagen fibers are able to propagate the signal in the direction of fiber orientation. Because of their structure, collagen fibers behave like semiconductors.

Furthermore, according to the arrangement between them and cells, the distinction can be made between afferent and efferent fibers; afferent fibers conduct electromagnetic energy to cells, whereas efferent ones carry energy from the cells to the fundamental substance. Interaction with collagen can take place through various types of stress, including PHOTONIC TRANSFER, as happens with laser. Collagen is a semiconductor in virtue of the crystal structure of its molecules; collagen fibers are organized in regular bundles. Regular beams both in solid and liquid form can be considered to be crystals. The collagen molecules in which all our organs are inserted and operate, can be defined as a coherent and orderly system of liquid crystals. It follows that collagen is able to carry information, molecules and energy. This means that there is veritable three-dimensional communication between the connective system and the cell. From all this it can be hypothesized that by interacting...
with collagen fibers, photons generated by the laser propagate electromagnetic energy, temporarily modifying the crystalline structure of the liquid crystal to favor the passage of single drug molecules and enabling them to reach the cell through the afferent fibers establishing the transfer processes to the cell.

The degree of penetration into the tissue can be adjusted by changing the time and speed of the laser scanning applied in the 2nd phase. At the level of some structures such as cartilage, it has been found that Criopass therapy creates important concentrations of the drug in the site to be treated, impossible with other traditional methods as the drug barely reaches the site concerned.

Used drugs

For the preparation of stem cell growth and differentiation factors, we used substances taken at 5 different stages of Zebrafish embryos: before epiboly, 50% of epiboly, 5 somites, 20 somites and the beginning of pharyngula, referred to as ZF1, ZF2, ZF3, ZF4 and ZF5, respectively. We also used the mixture (referred as Z6) of substances taken at the 5 different stages of organogenesis. Extracts were prepared in a glycero-alcoholic solution (60% glycerol, 5% ethanol, 0.12% potassium sorbate and 0.08% sodium benzoate) at the concentration of 100 micrograms/mL and stored at 4°C until the preparation of cryo-applicators. The solution was then diluted (1 to 10) in distilled water and injected into the cryo-applicators before being frozen at -18°C.

Patients were treated weekly with these solutions to compare results. Considering that the Cryopass Laser was registered by the Health Ministry of the Italian Republic as a medical device for the transfer pharmacological substances, the preparation of the growth and differentiation solution was prescribed as a galenic product by doctors who treated patients.

The clinical study was prepared and conducted in compliance with the "Declaration of Helsinki".

Results

All patients demonstrated an initial regeneration of hair in the form of a soft fleece after the first treatment with all the specific different preparations of stem cell growth and differentiation factors, but the best results were obtained using the solution containing all stages (ZF6 mixtures).

This regeneration was consolidated with subsequent treatments and after about 10 treatments, hair consistency was comparable with adult and pigmented hair. The number of hairs regrown per square centimeter was 31, with a minimum value 24 and a maximum value of 43.

There was no significant difference in hair regrowth in relation to patient age.

The treatment did not have any adverse effects and was accepted very well by patients, who were satisfied with achieved results.

At the six month check, the number of hairs in examined subjects was almost unchanged; an overall improvement in stem number and in volume was observed.

Below are the photographic images (Figures 3-13) during treatment, taken every 7 days.

![Figure 3 - Patient image time T0.](image)

![Figure 4 - Patient image time T1.](image)

![Figure 5 - Patient image time T2.](image)
Stem cell growth and differentiation factors from Zebrafish embryo and their role as epigenetic regulators in hair regeneration: results after transdermal administration using cryopass laser treatment

Figure 6 - Patient image time T3.

Figure 7 - Patient image time T4.

Figure 8 - Patient image time T5.

Figure 9 - Patient image time T6.

Figure 10 - Patient image time T7.

Figure 11 - Patient image time T8.
Discussion and conclusion

Human body tissue constantly regenerates after damage, due to the self-renewing and differentiating properties of its resident stem cells. In order to heal damaged tissue and regenerate functional organs, scientific research in the field of regenerative medicine is committed to understanding the molecular mechanisms through which the regenerative potential of stem cells can be leveraged for clinical application. The finding that some organisms are capable of regenerative processes and the study of conserved evolutionary patterns in tissue regeneration led us to the identification of natural molecules of ancestral species, like Zebrafish, capable of extending their regenerative potential to human tissues. The decision to study the role of substances taken from Zebrafish embryo in tissue regeneration and differentiation was made on the basis of two considerations: 1) Zebrafish have many proteins which are the same of those of the human species and 2) Zebrafish embryo is a model for studying stem cell differentiation events as it is possible to know the exact time of eggs fertilization, which enables the standardization of all research into substances of the complete epigenome, capable of regulating the expression of all the genes of all body cells. Our previous study on rejuvenation and differentiation of mesenchimal stem cells of human adipose tissue (hASC) using substances taken from Zebrafish embryo enabled us to conceive new possibilities regarding the use of different components of the epigenetic code of this embryo for tissue regeneration. In this study we have demonstrated that the use of all available information can be initially used to rejuvenate and then differentiate the tissue of an organism which is able to regenerate hair bulb cells in men with androgenetic alopecia. The regeneration of the hair bulb obtained using growth and differentiation factors taken from Zebrafish embryo proved to be superior compared to other growth factors like PRP, or hCRP, previously tested in our Medical Center by means of transdermal administration in Criopass Therapy Laser Treatment \(^3\)-\(^7\). The results can be explained as follows: hair bulb regeneration is a complex problem, considering that in order to obtain a good result, the hair bulb must receive complete information which has to be able to stimulate and regenerate different kind of cells. In order to obtain this result, complete and redundant information must be administered to the hair bulb. The only natural occurrence of such complete information is in an embryo during the period of organogenesis, and not in adult tissues, where growth and differentiation factors do not contain all the substances required to regenerate different kinds of cells. In fact starting from the fertilized egg, this is the only period in which all types of stem cells are differentiating in a complete way, making it possible to find all the growth and differentiation factors which are able to regenerate and differentiate all the cells of different kinds of tissues in an organism. Using liquid chromatography–mass spectrometry, we have demonstrated that growth and differentiation factors taken from Zebrafish embryo are proteins which are the same as those of the human species, and that these factors are able to regenerate different kinds of hair bulb cells, thus solving a highly complex biological problem.

The only way to solve complex problems of biology and medicine, like tissue regeneration and the regression of cancer diseases, is to change the scientific paradigm, requiring a shift from reductionism to a paradigm of complexity, as already published in many scientific papers\(^5\),\(^11\),\(^38\),\(^39\). Only with a change in the scientific paradigm will it will be possible to reorder the entire biological domain, in order to cure the most important chronic degenerative diseases, by regenerating tissues and improving health.

Conflict of interest:
Pier Mario Biava:
• Inventor but not owner of patent of Zebrafish Embryo extract.
• Cofounder of Novacell S.r.L.
Stem cell growth and differentiation factors from Zebrafish embryo and their role as epigenetic regulators in hair regeneration: results after transdermal administration using cryopass laser treatment

Enrico Bonizzoni:
• Owner of Cryopass Laser patent.

Antonino Laudani:
• Cofounder Prometeo Medical S.r.l.

Use of a Vibration tool to reduce pain from growth factors injection in the treatment of androgenetic alopecia: a randomized controlled trial

Marco Toscani, MD PhD\(^1\), Pasquale Fino, MD PhD\(^2\), Valentina Sorvillo MD\(^3\), Andrea Pierro, MD\(^4\), Francesca Romana Grippaudo, MD PhD\(^5\)

\(^1\),\(^2\),\(^4\)Plastic Surgery Dept., Faculty of Medicine and Dentistry, Sapienza University of Rome, Italy
\(^3\)Savoiamedical Center, Via Savoia 84, Rome, Italy
\(^5\)Plastic Surgery Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy

Abstract

Objective: local anesthetics (cream or tape) are often used to reduce pain associated with injection procedures, but might not be sufficiently effective or applicable when treating the scalp for androgenetic alopecia with growth factors injection. The aim of this randomized controlled trial was to determine whether the application of microvibratory stimulation during scalp injection would decrease pain reported by patients.

Methods: fifty consenting patients scheduled to undergo growth factors injections for the treatment of androgenetic alopecia were recruited. The study period was 12 months, with a single surgeon performing all procedures. The treatment area was divided in two equal halves and subjects were randomized to receive injections with vibration given by a mini massager in the first zone, and then no vibration in the second zone, or viceversa. At the end of the session, all patients were asked to express the level of discomfort of each procedure, using the Numeric Rating Scale.

Results: out of the 50 patients, 39 reported that vibration relieved the pain, 10 stated that it had no effect, and 1 complained that it made the pain worse. Vibration did not affect the safety of the injections. The average Numeric Rating Scale scores for the no-vibration and vibration injections were 5.34 and 4.16 respectively (p≤ 0.05).

Conclusions: vibration reduces pain associated with needling/injection of the scalp. The Gate Control Theory of Pain explains this effect.

Keywords
Vibration tool, growth factors injection, Pain, Numeric Rating Scale, Androgenetic Alopecia

Short Title: Vibrator tool to reduce GFI pain in alopecia

Received for publication January 17, 2020; accepted March 13, 2020 - © Salus Internazionale ECM srl - Provider ECM no 763

Correspondence

Pasquale Fino, MD PhD

Address: Via dei Quinzi 5, 00175 Rome
Phone: +39 3334571756
E-mail: pasquale.fino@gmail.com
Use of a Vibration tool to reduce pain from growth factors injection in the treatment of androgenetic alopecia: a randomized controlled trial

Introduction

Cosmetic treatments by means of injection can be a very painful and stressful experience for the patient. While various methods of relieving injection-related pain have been proposed, such as icing prior to treatment, applying cool air, performing the injection slowly and iontophoresis, none have proven to be very effective. Several reports have suggested that a vibration device safely and effectively relieves injection-associated pain by means of stimulation-induced analgesia. Growth factors injection (GFI) has proven to be effective in reducing hair loss associated with androgenetic alopecia and provides an opportunity to study whether vibration devices can effectively relieve the pain associated with injections to the scalp. The aim of this randomized comparative trial was to assess the safety and efficacy of mechanical vibration for relief in growth factors injection in patients presenting with early stage androgenetic alopecia. The results were evaluated in terms of pain score and patient compliance with the procedure.

Materials and methods

From June 2017 to June 2018, fifty male patients seeking consultation for hair loss related to androgenetic alopecia were enrolled in the study. All patients were treated at the Author’s private facilities. No Ethical committee approval was required because of the consolidated protocol treatment of GFI in early stage of androgenetic alopecia, and the non invasive nature of the vibration tool. The study followed principles outlined in the Declaration of Helsinki. Patients were informed about the study protocol, risks, benefits and potential complications before giving their consent. Only male, right-handed patients, aged 18-60 years old were enrolled in the study, to minimize sample differences. Exclusion criteria were: alteration of scalp sensitivity due to previous surgeries, trauma or diabetes mellitus. Each patient enrolled in the study was injected with 20 ml of a solution consisting of 3 mL of Polidesossiribonucleotide 5.625 mg/3ml (Placentex®, Mastelli, Via Armea, 90, 18038 Sanremo IM, Italy) and 0.5 ml of Hylauronic acid + Restructuring hair complex (Haircare®, Revitacare 21 Avenue de l’Equillette, 95310 Saint-Ouen-l’Aumône, France) and 12 ml of saline. The scalp was cleaned with 0,05% sodium hypochlorite solution injections over the entire scalp. At random, the rest of the lateral scalp and the anterior part of the head and the occipital region are innervated by the greater occipital nerve. The part of skin lateral to the temporal crest is innervated by the zygomaticotemporal nerve, a branch from the third division of the trigeminal nerve. The forehead and anterior scalp receive sensory innervation from the supratrochlear and supraorbital nerves, branches of the first division of the trigeminal nerve. The posterior part of the ear and a part of the retroauricular scalp receive sensory innervation from the lesser occipital nerve, a cutaneous spinal nerve arising between the second and third cervical vertebrae, along with the greater occipital nerve.

Sensory innervation of the scalp

The forehead and anterior scalp receive sensory innervation from the supratrochlear and supraorbital nerves, branches of the first division of the trigeminal nerve. The part of skin lateral to the temporal crest is innervated by the zygomaticotemporal nerve, a branch of the maxillary division of the trigeminal nerve. The rest of the lateral scalp and the anterior part of the head and the occipital region are innervated by the greater occipital nerve, a spinal nerve that arises between the first and second cervical vertebrae along with the lesser occipital nerve.

Injection procedure

The scalp was cleaned with 0,05% sodium hypochlorite and normal saline; all patients received growth factor solution injections over the entire scalp. At random, the procedure began with or without half of the area receiving concomitant application of a Vibration Device at 150-183 Hz (9000-11,000 times per minute). At the end of this first half of treatment, the procedure was repeated in the contralateral side with or without vibration. The vibration tool was applied to the scalp close to the site of injection.
Use of a Vibration tool to reduce pain from growth factors injection in the treatment of androgenetic alopecia: a randomized controlled trial

The device was moved to a different point every 3-4 injections, in order to treat the entire affected area, which varied according to the alopecia pattern of the patient. The device was applied by an assistant as follows: on the upper forehead for the treatment of the hair line and the anterior part of the scalp; on the temporal fossa for the injection of the parietal scalp; on several points of the occipital bone for the treatment of the posterior part of the scalp. Whether the patient was injected with or without vibration in the first half of the treatment was determined by using block randomization methods. Upon completion of treatment on both sides, the patient was asked to estimate their degree of pain on the Numeric Rating Scale (NRS).

Results

Fifty male patients were enrolled in the study. The average age was 42 years. All patients completed the study. None of the patients developed local or general reactions to any of the products involved in this study. The average pain scores on NRS for the no-vibration and vibration injections were 5.34 and 4.16 respectively (Table 1). Thirty-nine patients (78%) experienced less pain when the injection was administered with the application of vibration in the nearby area. Ten patients (20%) did not experience any difference in pain when treated with or without the application of the Vibrating tool. One patient (2%) reported experiencing more pain when vibration was applied during treatment. Thirty-nine patients reported pain relief during use of the vibration device, ten reported the same score for both treatments, and one reported that the vibration made the pain worse. Statistical analysis showed a t-value of 5.0316 with a p-value of 0.00012 (significance 0≤.001). This result indicates a statistically significant improvement in pain for the patients when treatment was performed while using the vibration tool.

![Figure 2 - An assistant positions the focal mechanical vibration device in order to apply it in an area close to the injection site.](image)

![Table 1 - Numeric rating scale values for pain in growth factors injection given with and without the simultaneous application of a vibration tool in the nearby area.](table)

Aesthetic Medicine / Volume 6 / Nº1 / January - March 2020
Discussion

The primary endpoint of this study was to evaluate whether a vibration tool used in combination with injections of the scalp for androgenetic alopecia would be effective in reducing pain associated with the procedure. Our initial findings suggest that applying a vibration tool in the nearby area to be injected with growth factors solution may have a significant role in reducing discomfort associated with the procedure, with a statistically significant difference in results when compared to injection alone.

Growth factors injection is now a standard for the prevention and treatment of Androgenetic Alopecia because of its efficacy, ease of use and non-invasiveness8,9. Despite this, pain due to multiple injections in such a highly sensitive area like the scalp still limits its use, especially since the treatment must be repeated every 3-6 months. Therefore a non-invasive procedure that can relieve pain should be considered, to improve patient compliance.

Although it is widely recognized that topical anesthesia with creams and tape is effective in skin numbing12, there are reports of allergy, dermatitis or other risks13, and only a poor level of analgesia is achieved. Local anesthesia injections cause pain and are therefore unsuitable for alleviating discomfort experienced by patients during treatment.

After this study it can be affirmed that the majority of a patient population treated for androgenetic alopecia with GFI in the scalp reported a lower pain sensation when a vibration device was used in association, while just a minority experienced no benefits. The anxiety and pain associated with injection of the scalp can be very subjective and vary greatly between patients, which may explain the difference in responses seen in this study, and why one patient reported experiencing more pain during injections with the vibrating device in action. However, the majority of patients did experience less pain and this warrants further research into the use of a vibration device for pain management during injection procedures.

We believe that the Gate Control Theory of Pain (first proposed by Melzack and Wall in 1965)14,15 may explain why the vibration device relieved pain associated with facial injections. These authors proposed that both thin (pain) and large diameter (touch, pressure, vibration) nerve fibers carry information from the site of injury to two destinations in the dorsal horn of the spinal cord - transmission cells that carry the pain signal up to the brain, and inhibitory interneurons that impede transmission cell activity. Activity in both thin (A-δ and C) and large (A-β) fibers excites transmission cells. Thin fiber activity impedes the inhibitory cells (tending to allow the transmission cell to fire) and large diameter fiber activity excites the inhibitory cells (tending to inhibit transmission cell activity). The large fibers, through inhibitory interneurons activation, inhibit the firing of small fibers (i.e., they close the "gate") and less pain is felt. This mechanism explains why a non-noxious stimulus, such as vibration, can suppress pain.

Conclusions

This study demonstrated that although none of the patients experienced a pain-free procedure when treated with GFI for androgenetic alopecia, vibration effectively relieves injection-induced pain during scalp treatment. These findings represent an initial step for further investigation.

An additional benefit to the procedure is that it is less costly than local anesthetics and the device can be used several times before the battery requires replacement. Our findings suggest that GFI with the assistance of an external vibration device resulted in increased patient compliance with ensuing treatments; patients reported they were more motivated and less stressed by the procedure.

Special thanks to Dr. Nicola Di Palo and Dr. Franco Bartolomei for theirs help in preparing this manuscript.

Conflict of interest disclosure

All Authors certify that there is no actual or potential conflict of interest in relation to this article.
Use of a Vibration tool to reduce pain from growth factors injection in the treatment of androgenetic alopecia: a randomized controlled trial

REFERENCES

Evaluation of the anti-ageing efficacy of Hilow Haenkenium cream in healthy woman

Enza Cestone¹ MD, Gilberto Bellia² PharmD, Vincenzo Nobile¹ MSc, Andrea Maria Giori² MSc, Andrea Alimonti³,⁴ MD PhD, Monica Montopoli⁵,⁶ PhD

¹Complife Italia, Pavia, Italy
²IBSA Farmaceutici Italia, Lodi, Italy
³Institute of Oncology Research (IOR), Bellinzona and Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
⁴Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
⁵Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, Padua, Italy
⁶Department of Medicine, Venetian Institute of Molecular Medicine, University of Padua, Padua, Italy

Abstract
The aim of the study was to assess the anti-ageing properties of a cosmetic cream containing two molecular weights of hyaluronic acid (300kDa and 800kDa) and an extract of Salvia Haenkei. Fifty female volunteers were enrolled in this study, aged 40–65 years, with moderate signs of skin ageing and skin redness. The cream was directly applied on the area to be treated, and its efficacy was evaluated at different intervals over 84 days, using non-invasive bioengineering techniques, together with a subject self-assessment and dermatologist clinical assessment. For all the instrumental assessments, a clear improvement was observed already at the first visit (day 14 from the start of applications) and this improvement progressively increased until the last visit on day 84. The positive instrumental results were paralleled by both clinical evaluation and self-assessment by the subjects. The positive results were obtained in the absence of any undesired effect. Application of the cream containing Hilow and Haenkenium induced a significant improvement of the clinical signs of skin ageing and skin redness caused by the cold and wind, with a high degree of tolerability.

Keywords
Hyaluronic Acid, Salvia Haenkei, Cosmetic, Clinical Study

Received for publication January 24, 2020; accepted March 12, 2020 - © Salus Internazionale ECM srl - Provider ECM no 763
Introduction

With age, the skin changes its properties and this is an unpleasant effect\(^{1-4}\). Skin ageing is multifactorial and includes natural chronological ageing as well as external agents associated with ageing (for example exposure to UV light, cold, etc)\(^{5-8}\). There is a high demand for treatments capable of restoring the youthful state of skin. One of the characteristics of aged skin is a loss of hydration, mostly due to depleted hyaluronic acid (HA) levels in the dermis compared to in younger skin. This finding has made HA an essential ingredient of anti-ageing treatments\(^{9,11}\).

HA is present in different forms and molecular weights and can be administered by intradermal injections or topically\(^{12-19}\).

Intradermal injection ensures the release of HA in deep layers of the dermis. On the other hand, topical administration, the application of a cream for example, is undoubtedly less invasive and easier to perform. However, in the case of topical HA application by means of serum or cream, intracellular space is smaller than the size of classical HA preparations, making it more difficult for the active ingredient to penetrate space and membranes to reach deeper dermis layers\(^{12,20}\). Reduced size HA preparations are one way of increasing HA dermis absorption, thus increasing efficacy\(^{12,21}\).

Another way is combining the use of low molecular weight HA and other agents, known to prevent cellular ageing, in the same cream\(^{22,23}\). With increasing age, cells undergo senescence, an effect which reduces their ability to divide\(^{24,25}\). Senescence can be accelerated by exposure to UV damage or oxidative stress due to the production of reactive oxygen species; this kind of senescence is known as premature senescence and is implicated among others in skin ageing\(^{26,27}\). Substances which prevent premature cell senescence are likely to be active in anti-ageing treatments, provided they are well tolerated, especially after repeated treatments. In a recent study, we identified Salvia Haenkei (SH), a Bolivian plant rich in vitamin B and antioxidant properties, as a potential anti-senescence agent, using in vitro human cells and reconstructed human epidermis\(^{28}\). These positive effects were achieved in the absence of undesired effects in preclinical as well as in clinical tests\(^{28}\).

These characteristics make Salvia Haenkei extract an ideal candidate for combination with HA in topical cream, applied as a skin ageing treatment.

This study aims to evaluate the efficacy and tolerability of a topical application of Hilow Haenkenium cream (mostly composed of HA and Salvia Haenkenium extract) in 50 women subjects with moderate signs of skin ageing. Efficacy was evaluated at different intervals from the start of the application, by using both clinical and instrumental evaluations as well as self-assessment by the subjects.

Materials and Methods

Subjects and treatments

Subjects for the study were enrolled from February to May, under the supervision of a certified board of dermatologists. All the volunteers signed a consent form containing information on study procedures. This study was conducted in compliance with the ethics of the “Helsinki declaration” and was recorded in ISRCTN registry (registration number: 12067877).

The following inclusion criteria were established for subjects: Healthy Caucasian women aged between 45 and 60 years with moderate signs of skin ageing, not involved in similar studies in the last three months, instructed not to use anything other than the product under evaluation for the entire duration of the study. Subjects were allowed to use their ordinary washing products, but were asked to refrain from the use of face care products (except for light make-up). Subjects were also asked to avoid voluntary sun exposure. Subjects were excluded from the study if they did not meet the inclusion criteria, if they had a history of atopy, hypersensitive skin or any allergy or sensitivity to cosmetics and/or solar and topical medications. Subjects were also excluded if they were pregnant or nursing and if the principal investigator felt that skin conditions were inappropriate for participation.

After an initial screening, subjects who met inclusion criteria underwent a screening visit, and were requested to sign for informed consent; their compliance with study requirements was ascertained. Those found to be compliant with study criteria were enrolled and subjected to a basal clinical evaluation, a basal skin self-perception questionnaire and a basal instrumental (skin profilometry, skin elasticity, skin redness and skin stripping) evaluation. The clinical and instrumental evaluations were repeated after 14, 28, 56 and 84 days from the initial treatment, while the questionnaire-based self-assessment was administered once, during the last visit (84th day). The treatment consisted of applying and gently massaging a thin layer of cream on the facial area to be treated, until fully absorbed. Instrumental measurements were performed at least 12 hours after the last product application. On the day of the measurements, subjects were asked not to apply the product in the morning.

Characteristics of the cream

The cream used in this study (Profhilo Haenkenium\(^{®}\)) has the peculiar characteristic of containing two different molecular weights of HA (300kDa and 800kDa). Low molecular weight HA is hydrophilic and penetrates the stratum corneum of the skin, thus maintaining skin hydration, whereas high molecular weight HA protects the skin by maintaining the integrity of the hydrolipidic film\(^{21}\). Together, both forms of HA synergistically contribute towards skin firmness and elasticity restoration. The cream’s action is further enhanced by the presence of a strong anti-oxidant vegetable extract of SH, which reduces the degradation of HA and protects skin from free radicals. The extract, analyzed by HPLC-DAD and HPLC- MS, was found to contain 6,8-di-C-glucosyl-apigenin, Diglucuronyl-luteolin isomer I, Glucoronyl-apigenin, Genipin, Diglucuronyl-luteolin isomer II, Rosmanol/epirosmanol derivative, Apigenin derivative, Luteolin, Apigenin and Betulicin acid with apigenin and luteolin glycosides as its main constituents. The quantitative composition of the cream used in the study is reported in Table 1.
Evaluation of the anti-ageing efficacy of Hilow Haenkenium cream in healthy women

Instrumental evaluations

Skin profilometry

Skin surface was quantitatively assessed by using a non-contact in vivo skin measurement device, Primos 3D (GFMesstechnik GmbH), which is based on structured light projection. The sensor present in the instrument can evaluate several skin surface properties (i.e. wrinkle depth, volume, roughness etc.). For this study, only wrinkle depth was considered; data was analyzed using a dedicated software.

Skin elasticity

Skin elasticity was determined using a suction method, by applying negative pressure to mechanically deforming the skin using a Cutometer® MPA 580 (Courage+Khazaka,

Table 1 - Quantitative composition of the cream.

<table>
<thead>
<tr>
<th>TRADE NAME</th>
<th>CHEMICAL COMPOSITION</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHYLENEDIAMINETETRAACETIC ACID DISODIUM SALT</td>
<td>DISODIUM EDTA</td>
<td>0.100</td>
</tr>
<tr>
<td>AQUAXYL</td>
<td>XYLITYLGLUCOSIDE</td>
<td>1.275</td>
</tr>
<tr>
<td></td>
<td>ANHYDROXYLITOL</td>
<td>0.870</td>
</tr>
<tr>
<td></td>
<td>XYLITOL</td>
<td>0.300</td>
</tr>
<tr>
<td>SEPIMAT P</td>
<td>POLYMETHYL METHACRYLATE</td>
<td>1.000</td>
</tr>
<tr>
<td>MONTANOV L</td>
<td>C14-22 ALCOHOLS</td>
<td>2.400</td>
</tr>
<tr>
<td></td>
<td>C12-20 ALKYL GLUCOSIDES</td>
<td>0.600</td>
</tr>
<tr>
<td>ACEMOLL IN</td>
<td>ISONONYL ISONONANOATE</td>
<td>5.000</td>
</tr>
<tr>
<td>LANOL 2681</td>
<td>COCO CAPRYLATE/CAPRATE</td>
<td>5.000</td>
</tr>
<tr>
<td>SIMULGEL NS</td>
<td>HYDROXYETHYL ACRYLATE/SODIUM ACRYLOXYLDIMETHYL TAURATE COPOLYMER</td>
<td>1.088</td>
</tr>
<tr>
<td></td>
<td>SQUALANE</td>
<td>0.798</td>
</tr>
<tr>
<td></td>
<td>POLYSORBATE 60</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>SODIUM HYALURONATE HMW (800.000 Da)</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>SODIUM HYALURONATE LMW (300.000 Da)</td>
<td>0.100</td>
</tr>
<tr>
<td>L-ARGININE</td>
<td>L-ARGININE</td>
<td>0.300</td>
</tr>
<tr>
<td>EUXYL K 701</td>
<td>PHENOXYETHANOL</td>
<td>0.948</td>
</tr>
<tr>
<td></td>
<td>BENZOIC ACID</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>DEHYDROACETIC ACID</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>ETHYLHEXYLGLYCERIN</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>SALVIA HAENKEI EXTRACT</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>PURIFIED WATER</td>
<td>Up to 100</td>
</tr>
</tbody>
</table>
electronic GmbH). The device generates negative pressure (450 mbar); skin is attracted (drawn) into the opening of the instrument probe and released after two seconds.

Skin redness
A spectrophotometer/colorimeter CM-700D (Konica Minolta) was used to evaluate skin redness. The instrument uses reflectance spectrophotometry to emit an intense white light that is re-emitted from the object (at an angle of 10°) and collected by 36 photodiodes, each with a different spectral sensitivity (from 400 nm to 700 nm). The sensitivity of the photodiodes is regulated according to a "standard observer" that simulates the sensitivity of the human eye. This information is then elaborated by a microprocessor.

Skin stripping
Skin strippings were taken using Corneofix® foils (Courage+Khazaka electronic GmbH). The technique involves the collection of different stratum corneum layers which were stored at -80°C for Ferric Reducing Antioxidant Parameter (FRAP) assays. The FRAP assay is a direct measure of the total reductive power of a biological matrix and an indirect index of the capability of the considered system to resist oxidative damage. FRAP uses the antioxidants in the biological system as a reductive agent in a colorimetric method based on redox reactions29. The reduction at acid pH of the complex TPTZ-Fe(III) in ferrous form (Fe(II)) is characterized by an intense blue color. The reaction is monitored by measuring solution absorbance at 595 nm. Recorded absorbances are compared to a Fe(II) standard curve of known values. The results are directly proportional to the total reductive power of the antioxidant in the reaction mix.

Clinical evaluation
Clinical evaluation of skin redness and skin firmness were performed by a dermatologist according to the clinical scores reported in Tables 2, 3 and 4. The dermatologist carried out the evaluations at each visit for all 50 subjects participating in the study. At each visit the dermatologist assessed the occurrence of any adverse skin reaction using a clinical score scale (1. no reaction, 2. mild, 3. moderate, 4. evident).

<table>
<thead>
<tr>
<th>SCOR</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abse</td>
<td>1</td>
</tr>
<tr>
<td>Slight</td>
<td>2</td>
</tr>
<tr>
<td>Moder</td>
<td>3</td>
</tr>
<tr>
<td>Seve</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2 - Clinical classification of skin redness.

<table>
<thead>
<tr>
<th>SCOR</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unel</td>
<td>1</td>
</tr>
<tr>
<td>Poor</td>
<td>2</td>
</tr>
<tr>
<td>Suff</td>
<td>3</td>
</tr>
<tr>
<td>Elas</td>
<td>4</td>
</tr>
<tr>
<td>Elas</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3 - Skin conditions improvement vs T0.

<table>
<thead>
<tr>
<th>SCOR</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unel</td>
<td>1</td>
</tr>
<tr>
<td>Poor</td>
<td>2</td>
</tr>
<tr>
<td>Suff</td>
<td>3</td>
</tr>
<tr>
<td>Elas</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4 - Clinical classification of skin compactness.

Self-assessment questionnaire
A self-assessment questionnaire was given to each subject at each visit. The questionnaire included multiple-choice responses to questions on how the subjects evaluated skin hydration, brightness, elasticity, tonicity, and how the product was able to reduce the signs of skin ageing, resulting in a pleasant feeling. The questionnaire concluded with a global evaluation of the product. The data were then analyzed and reported as a percentage of subjects giving a particular response for each item.
Evaluation of the anti-ageing efficacy of Hilow Haenkenium cream in healthy woman

Statistical analysis

Instrumental data were submitted to two-way test of student for paired data. The Wilcoxon signed-rank test was used to compare clinical data. The statistical analysis was performed by comparing the results of different visits to those determined at T0. Variations were considered statistically significant when the p value was <0.05. The software used for statistical analysis was NCSS 10 - PROFESSIONAL, vers. 10.0.7.

Results

Fifty women who met inclusion criteria were enrolled in this study. They were ranging in age from 45 to 60 years, with a median age of 54 years.

Figure 1 reports the results of the skin profilometry assay for all 50 subjects determined at the different visits. A clear and statistically significant (p<0.05) reduction in wrinkle depth was observed already at day 14, with a progressive and statistically significant decrease (p<0.05) in subsequent visits, up to day 84, in which the lowest mean wrinkle depth was recorded. It is worth noting that there was a clear improvement of the wrinkle depth for all subjects except one, whose wrinkle depth, T0, was already low (the lowest determined, below the mean value) and remained constant during all subsequent visits. Considering the mean value, a decrease in roughly 30% of wrinkle depth was found from the beginning of the study to the last measurement at day 84.

Representative images obtained using Primos 3D are reported in Figure 2. With reference to skin elasticity, the instrument displays skin resistance to negative pressure and its ability to return to its original position as curves (penetration depth in mm/time) in real time during the measurement. For the purpose of this study, two parameters were considered: R0 (skin firmness) and R2 (overall skin elasticity), both determined by measurements.

Figure 3, Panel A depicts the mean skin elasticity values determined at baseline (T0) and at subsequent visits (day 14, 28, 56 and 84). As it can be seen, a progressive and statistically significant (p<0.05) increase in elasticity was found with a mean increase at day 84 of approximately 10% relative to the basal values. In this case, the increase in skin elasticity was determined in all 50 subjects. The second parameter (R0, skin firmness), obtained from instrumental measurements, was skin firmness (R0 parameter). In this case, a progressive decrease in values was found for all participating subjects, with a mean decrease of 11.8%, relative to basal level, observed at the last measurement (day 84) (Figure 3 Panel B). For this parameter too, the values at each visit were statistically significantly different (p< 0.05) from those at baseline.

The third instrumental measurement of the study is skin redness, determined using a spectrophotometer. The instrument uses reflectance spectrophotometry to elaborate skin color through a microprocessor and determines the value a* which is a measure of the red component. The higher the value, the more pronounced the redness of skin. Figure 4 reports the mean values determined during the different visits. A statistically significant (p< 0.05 for each time point relative to T0) and progressive reduction in skin redness was found, ranging from an arbitrary mean value of 17.4 at baseline to a mean value of 15.6 at day 84, with a mean decrease of approximately 10%. (This decrease was observed in 46 out of 50 subjects).

Skin antioxidant capability was measured using stripped stratum corneum layers collected as described in Materials and Methods. The subsequently performed FRAP assay determines the total redox activity of the stratum corneum layers.
The positive results obtained with all the instrumental evaluations used in the present study were confirmed by a parallel clinical evaluation. Using the parameters reported in Tables 2 and 3, a clinical improvement in skin redness was reported for the majority of the subjects as shown in Figure 6. The benefits were present in 20% of the subjects at day 14, and this percentage increased over time, reaching 76% at day 84. As regards the clinical evaluation of skin compactness, using the scale reported in Table IV, the dermatologist was able to appreciate an improvement in 14% of subjects at day 14, and this percentage dramatically increased over time, reaching 96% at day 84 (Figure 6).

The values derived from this assay are graphically reported in Figure 5, where it can be seen that a progressive increase in skin antioxidant capability is detectable at each visit, with a statistically significant (p< 0.05) improvement already detectable 14 days after the initial application of the cream and a slight increase in subsequent visits. The mean percentage increase in antioxidant capability was in fact 43% at day 14 (relative to baseline) and reached 55% at day 84. An improvement was observed in all 50 subjects analyzed.
Evaluation of the anti-ageing efficacy of Hilow Haenkenium cream in healthy woman

The daily application of the cream for 84 days generated highly positive results in different assays. Interestingly, positive effects were already demonstrable two weeks after the application and were maximal at day 84. The results of this study are consolidated by the fact that four different instrumental measurements of anti-ageing effects (reduced wrinkle depth, increased elasticity, reduced skin redness and increased antioxidant capability) were all independently concordant in demonstrating the efficacy of applications. Furthermore, the instrumental demonstration of efficacy was corroborated by the clinical assessment performed by a dermatologist, and a self-assessment performed by the 50 subjects, thus strengthening the overall results. The results are further enhanced by the fact that they were obtained in the absence of any undesired effects. It should also be noted that positive results were obtained in almost all the subjects participating in the study and no visible improvements were observed in very few cases. Although creams containing HA are thought to be less clinically effective than HA injected in the dermis, the results of this study clearly demonstrate the clinical efficacy of using a non-invasive, easy to perform application.

Conclusions

In conclusion, in subjects with moderate signs of skin ageing, this study clearly demonstrated the efficacy of the Profhilo Haenkenium® cream in reducing the effects of skin ageing. It is worth noting that the positive results obtained with a simple daily application of the cream were clinically demonstrated by a dermatologist sustained by several instrumental determinations and corroborated by the highly positive self-assessment performed by the subjects. Furthermore, the daily application of the cream was associated with extremely high tolerability and no adverse reactions were reported by any of the 50 subjects enrolled in the study.

Table 5 - Summary of the subjects’ self-assessment at each visit.

<table>
<thead>
<tr>
<th>QUESTIONS</th>
<th>% OF SUBJECTS GIVING POSITIVE JUDGMENT AT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 14</td>
</tr>
<tr>
<td>How do you evaluate your skin hydration?</td>
<td>90</td>
</tr>
<tr>
<td>How do you evaluate your skin brightness?</td>
<td>88</td>
</tr>
<tr>
<td>How do you evaluate your skin elasticity?</td>
<td>86</td>
</tr>
<tr>
<td>How do you evaluate your skin tonicity?</td>
<td>84</td>
</tr>
<tr>
<td>Overall, does your skin appear healthier?</td>
<td>92</td>
</tr>
<tr>
<td>How do you evaluate product efficacy in reducing signs of skin ageing?</td>
<td>92</td>
</tr>
<tr>
<td>How do you evaluate product efficacy in reducing the visibility of wrinkles?</td>
<td>-</td>
</tr>
<tr>
<td>How do you globally evaluate the product?</td>
<td>92</td>
</tr>
</tbody>
</table>

The applied cream was highly tolerated, with no subject reporting any undesired effect at any visit, thus resulting in 100% tolerability. Overall, the subjects’ self-assessment, through the use of the questionnaire, demonstrated a highly positive judgment, clearly visible in the summary reported in Table 5. Already after two weeks, 92% of subjects gave a positive global evaluation of the cream and this percentage increased at each visit, reaching 98% (49 out of 50 subjects) at day 84.

Discussion

Cellular senescence is defined as a stable arrest of cell growth that occurs in all human cells during ageing. As a result of stressful events, such as oncogene over-expression, ROS generation and DNA damage (for example induced by UVR), cells may prematurely become senescent. In this scenario, the importance of developing innovative strategies, which prevent the accumulation of senescence cells or selectively kill them, is evident in counteracting ageing and ageing-associated disorders. HA is the most widely used agent for the treatment of skin ageing. It has several advantages: firstly, as a component of the extracellular matrix, extensively present in human tissue, it has no allergenic potential; secondly, its high tolerability has been demonstrated in several studies; thirdly, it is a biocompatible agent. It is present in several preparations, including dermal fillers and creams, in varying quantities. In particular in creams it can be present either alone or together with other components, which can increase the potential of HA to reduce the effects of skin ageing. This study evaluated the efficacy of a cream containing HA and extract from Salvia Haenkei, previously proven to reduce cellular senescence in different experimental systems. By using a skin human epidermis model (EpiSkin), it was indeed demonstrated that SH extract decreases the levels of senescence cells by affecting IL1α release and reducing ROS generation. The daily application of the cream for 84 days generated highly positive results in different assays. Interestingly, positive effects were already demonstrable two weeks after the application and were maximal at day 84. The results of this study are consolidated by the fact that four different instrumental measurements of anti-ageing effects (reduced wrinkle depth, increased elasticity, reduced skin redness and increased antioxidant capability) were all independently concordant in demonstrating the efficacy of applications. Furthermore, the instrumental demonstration of efficacy was corroborated by the clinical assessment performed by a dermatologist, and a self-assessment performed by the 50 subjects, thus strengthening the overall results. The results are further enhanced by the fact that they were obtained in the absence of any undesired effects. It should also be noted that positive results were obtained in almost all the subjects participating in the study and no visible improvements were observed in very few cases. Although creams containing HA are thought to be less clinically effective than HA injected in the dermis, the results of this study clearly demonstrate the clinical efficacy of using a non-invasive, easy to perform application.
Conflicts of Interest

EC and VN are employees of Complife Ita GB and AMG are employees of IBSA Farmaceutici Italia Srl. This study has been sponsored by IBSA Farmaceutici Italia Srl.

Acknowledgments

The authors are grateful to Giovanna Damia for help in writing the manuscript.
REFERENCES

Photoactivation of Autologous Materials with a New Reliable, Safe and Effective Set-Up

Hernán Pinto

1i2e3 Biomedical Research Institute, Barcelona, Spain

Abstract

Background: The possibility of improving conditions and pathologies using biological materials prepared with the patient’s own tissues has always been an attractive idea. There is a great disparity between the huge amount of preclinical data and the limited research conducted on photomodulation or photoactivation. This is because, for an effective and controlled management of light energy, several obstacles must be overcome.

Aim: The aim of this study is to evaluate the physical obstacles encountered by light in its path from the source to the biological tissue lodged in a receptacle specifically built for this purpose.

Methods: Total reflectance (specular + diffuse for an incidence angle of 8o) and total transmittance (regular + diffuse) of a rectangular area of 2 cm² corresponding to a 5-cm long, 4-cm wide, 1-mm thick Terlux 2812HD plastic polymer sheet were evaluated.

Results: Showed that, with this set-up, over 90% of emitted light energy reaches the targeted tissue, with less than 10% loss in the process.

Conclusion: Data obtained in this study enable us to establish the suitability of this system as an effective tool to take advantage of the clinical benefit of photoactivation of biological materials.

Keywords

Autografting, cell transplantation, light, photoactivation, photomodulation

Abbreviations: LEDs, light-emitting diodes; CSIC, Consejo Superior de Investigaciones Científicas (Spanish National Research Council)

Correspondence

Hernán Pinto, MD, PhD

Address: i2e3 Biomedical Research Institute, Carrer Major 79, 08921, Barcelona, Spain

E-mail: hpinto@i2e3.com
Photoactivation of Autologous Materials with a New Reliable, Safe and Effective Set-Up

Introduction

Regenerative Medicine is an emerging interdisciplinary field of research with clinical applications, focused on repairing, repleting or regenerating cells, tissues or organs in order to restore damaged function.1 The possibility of healing or improving conditions and pathologies through regenerative medicine by using biological materials prepared with the patient’s own tissues has always been a very attractive idea. That fantasy became a reality in 1958, when the first report on an autologous hematopoietic cell transplant attempt was published.2 Only two decades later, the first reports regarding the healing of pathologies that had been previously considered incurable appeared3,4. At the beginning of the 60s, the first successful trials with stem cells on animals were published, continuing for the next 20 years. The first attempts on humans failed5,6 but, during the 80s, these treatments became established7,8; and, half a century after the first attempts, autologous transplants became a versatile medical resource, used for several purposes and with a high frequency. In the last decade, autologous materials, such as plasma or serum with high concentrations of growth factors or antibodies, have been massively used9. The simple manipulation of a small amount of the patient’s blood allowed physicians to deliver good therapeutic effects through different administration routes, such as: ocular10, intramuscular11, epidural perineural12, intra-articular13, or transdermal14, and for a myriad of medical specialties. The possibility of processing our own blood in order to obtain precious substances for a particular purpose opened the door for the development of new treatments, indications and techniques. But, eventually, the amount of improvements regarding the general use of these materials slowed down dramatically until the present day, when the game-changing concept of “conditioning” appears. Autologous materials can be conditioned. In this context, conditioning stands for the controlled exposure of the autologous material to a certain physical and/or chemical stimulus, relying on the fact that the exposure itself will determine changes in the material that will ultimately lead to an enhancement of its clinical capabilities and curative potential. The field of action of conditioning of autologous materials, of biostimulation or biomodulation, and of biomaterial activation is extremely wide. One of the conditioning methods that has been more researched in recent years is photostimulation or photomodulation. This term includes all procedures performed with different light technologies, such as: lasers, light-emitting diodes (LEDs) and other types of lamps and/or emitters. The action that light exerts on biological structures is based on the first law of photobiology, according to which light absorption requires the presence of a photoreceptor that, when excited, may induce activity through signaling cascades15. To explain this interaction, several mechanisms have been proposed, although there are studies showing results that suggest the important roles played by oxidative processes in biostimulation: increases in cell proliferation and in levels of oxygen reactive species after stimulating leukocytes using a 660-nm light and a dose of 0.5-5 J/cm²16, and an increase in cell proliferation after stimulation of osteoblasts with a 980-nm light and blocking of said proliferation in the presence of an antioxidant agent17. Regardless of the molecular mechanism involved, it is accepted that light modifies cell function, such as that of fibroblasts, and accelerates the repair of connective tissue18. A high cell proliferation (significantly higher than the control group) has also been reported after stimulation of cells with several energies between 1.96 J/cm² and 7.84 J/cm²19. It is generally accepted that the energy density that seems to induce an effective biostimulation or biological conditioning effect is extremely variable, ranging from magnitudes as different as 0.09 J/cm² and 90 J/cm², although the most frequently used values are within the range of 1-5 J/cm²20. The concomitance of a large amount of preclinical data and a very limited number of high-level studies conducted on human beings in the field of biophotomodulation is concerning. Concerning, but not surprising because, for an effective and controlled management of light energy, a fair number of physical obstacles must be overcome. First, tissues must be arranged in such a way as to ensure they are properly exposed to the light emitted. Second, in order to set the foundation of an accurate dosage and a future therapeutic protocol, exposure of the whole tissue must be homogeneous. Furthermore, receptacles must be built and standardized with the proper chemical composition and geometry, allowing to ensure the efficacy of the stimulus administered and patients’ safety. Lastly, the technology containing a light emitter able to provide energy to the receptacle in a proper and safe way must be built. In order to overcome these physical obstacles and ensure a proper dosage to set the foundation of a photomodulation or photoactivation treatment, a receptacle was built (Figure 1).

Figure 1 - Receptacle designed to photoactivate 10 ml of liquid autologous tissue. Specifications can be found in the main text.
Specifically designed, it is mostly made of a medical-grade synthetic polymer called Terlux 2812HD (it contains other components in less degree, which have not been mentioned for industrial protection reasons). Besides its special chemical composition, its geometry has been conceived as to maximize the interface with the light source, allowing proper exposure of the whole tissue to the light.

Finally, the dimensions of the light source and the way the receptacle has been arranged inside have allowed to provide the receptacle itself with very thin walls (1 mm) and a camera that, with very few mm of depth, is able to lodge 10 ml of liquid biological material inside. These characteristics enable us to stimulate a fairly appropriate volume of tissue for treatment, and at the same time minimize the turbulent flow of the material inside for proper homogenization of the dose.

The aim of this study has been to evaluate the capability of the emitted light (280-1500 nm) to go through the medical-grade synthetic polymers that constitute the receptacle.

Methods

Total reflectance (specular + diffuse for an incidence angle of 80) and total transmittance (regular + diffuse) of a rectangular area of 2 cm² corresponding to a 5-cm long, 4-cm wide, 1-mm thick Terlux 2812HD plastic polymer sheet were evaluated.

For this, a double-beam spectrophotometer (Perkin Elmer, Lambda 1050) was used, with a diffuse reflectance accessory provided with an integrating sphere painted on the inside with barium sulfate (measurement geometry: 0°:d, including the specular component of reflectance). A method of measurement by comparison with a diffuse reflectance pattern was used.

Spectral reflectance has been measured in the interval from 280.0 nm to 1,500.0 nm, with a 2.0-nm bandwidth in the ultraviolet and visible spectra, and with a variable bandwidth in the infrared spectrum.

The mean of uncertainty for measurements was 0.02 (SD 0.02). BK97 (register number) was used as the reference pattern, taking the zero value of the instrument and using a light ramp instead of the sample. Three independent sweeps were performed.

All measurements were conducted at the Institute of Optics “Daza de Valdés” Spanish National Research Council (CSIC), Madrid, based on their PTRA10 (Diffuse reflectance calibration procedure) technical procedure and under controlled environmental conditions (22.6±0.5°C).

Transmittance and reflectance were not expressed in any unit because they were the result of the quotient of two radiant fluxes: the incident and transmitted fluxes (transmittance), and the incident and reflected fluxes (reflectance).

Results

The transmittance curve (Figure 2) produced a mean value of 85.83% (SD 13.05). When analyzed, three areas can be easily distinguished. The first area of the curve included the interval from 280 nm to 490 nm and shows an abrupt increase in transmittance values of 6.35% to 88.45%. The mean of this area was 69.33% (SD 24.98). The second area of the curve included the interval from 490 nm to 1,100 nm and had a mean value of 90.80% (SD 0.81). A plateau can be observed, with virtually constant transmittance values that fluctuated between 88.62% and 91.80%. Lastly, the third area of the curve included the interval from 1,100 nm to 1,500 nm and showed a mean value of 87.32% (SD 1.19). A small decrease in transmittance can be observed, with somewhat higher fluctuations that can reach a value of 85.69%.

The analysis of the total reflectance curve shows a mean value of 8.87% (SD 0.62). Three areas can be distinguished in this curve as well (Figure 3). The first area of the curve included the interval from 280 nm to 380 nm. Here, measurement results increase until reaching the maximum peak of the whole sample: 10.68%. The mean value was 9.36% (SD 1.29). The second area of the curve included the interval from 380 nm to 670 nm, showing a gradual decrease in reflectance values until reaching 8.94%. The mean value is 8.60% (SD 0.23). Lastly, the third area of the curve includes the interval from 670 nm to 1,500 nm, where fluctuations of values decreasing until reaching 8.19% can be observed. The mean value was 8.60% (SD 0.23).
Discussion

Results show that over 90% of emitted light energy reaches the targeted tissue, with less than 10% being lost in the process. This is the same for all wavelengths between 450 nm and 1,450 nm, thus providing this treatment with huge versatility and potential. Taking into account that with the data obtained from this study, we can accurately measure the reduction of energy reaching the target, a simple calculation will allow us to adjust the light source emission to the required dose with precision. That is to say, this setup (the receptacle and the emitting source) ensures two fundamental facts: that light energy, both in quantity (dosimetry) and quality (wavelength/light), is reliable, controlled and measurable; and that we can accurately control the amount of energy absorbed by the tissue. Both facts will ultimately allow to establish effective therapeutic protocols for photomodulation or photoactivation. However, it is worth noting that these results make no mention of the true clinical potential that photomodulation or photoactivation has or may have.

Conclusion

Data obtained in this study enable us to establish the suitability of this system as an effective tool to take advantage of the clinical benefit of photoactivation of biological materials. Future clinical studies must assess the clinical benefit of this treatment and transform this innovative, reliable tool in effective therapeutic protocols that are able to provide benefits for patients in endless clinical contexts. From here on, a huge range of possibilities opens up, where each specialist can suggest, with guarantees, the use of photomodulation or photoactivation in a safe and reliable way for different pathologies and with different goals.

Acknowledgments

The author would like to thank the medical writer team of i2e3 Biomedical Research Institute, and specially Elena Sánchez-Vizcaíno Mengual and Paloma Goñi Oliver.

Author contributions

HP was involved in conceptualization, investigation, writing-original draft, project management.

Conflict of interest

The author declares no financial or commercial conflict of interest.
REFERENCES

Review

Emerging Goals of Aesthetical Medicine in Hyperpigmentary Skin: an Oncological Perspective

Aurea Lima1,2,3, Ana Ferreira Castro4, Rodrigo Ayoub5

1Centro Hospitalar de Entre o Douro e Vouga, EPE, Hospital de São Sebastião, Serviço de Oncologia Médica. R. Dr. Cândido Pinho 5, 4520-211 Santa Maria da Feira, Portugal.
3Grupo de Oncologia Molecular e Patologia Viral, Centro de Investigação, Instituto Português de Oncologia do Porto (CI-IPOP). Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
4Lenitudes - Medical Center & Research. Rua Professor Doutor Serafim Pinto Guimarães, 222, 4520-103 Espargo, Santa Maria da Feira.
5Hospital da Luz Aveiro, Rua do Brasil 21, 3800-009 Aveiro, Portugal.

Abstract
Cancer is a chronic disease with important implications for individuals and societies. New and more effective treatments appear every day, even as new toxicity profiles emerge continuously. Cutaneous adverse drug reactions are common in oncological patients and anticancer drugs can be responsible for skin hyperpigmentation, a non-life-threatening skin toxicity that can be a source of significant distress for the patient, due to their influence with multidimensional elements of personal development, directly related to self-esteem. Given that skin hyperpigmentation is one of the most frequent reasons for seeking aesthetic medicine consultation, aesthetic medicine can be a valuable tool in relation to cancer. Therefore, it is important for aesthetical medicine physicians to be aware of cutaneous complications caused by anticancer drugs, in order to assist in their prevention, proper diagnosis, and correction/treatment. Despite the availability of various skin hyperpigmentation treatments, not all are suitable for cancer patients, especially those with active disease. Topical skin-whitening agents, chemical peels, mesotherapy, microneedling and laser technologies, complemented with photoprotection and cosmetic camouflage, are the most common treatment lines in hyperpigmented skin. However, each patient is a different case and for some patients, none of these options can be applied. Clinical management challenges include: skin hyperpigmentation disorder, due to its chronic, persistent, and relapsing nature; reluctance of the clinician or patient to use certain agents/interventions; failure to identify and avoid contributing factors; insufficient attention to psychosocial aspects of the disease and a lack of scientific evidence in treatments reported in cancer patients. This review focuses on skin hyperpigmentation related to anticancer drugs, discusses the perspective of aesthetical medicine in its management, and underlines the importance of close collaboration with oncologists, in order to improve cancer patients’ quality of life.

Keywords
Aesthetic Medicine, anticancer drugs, cutaneous adverse drug reactions, oncological patients, quality of life, skin hyperpigmentation

Short Title: Aesthetical Medicine in Oncology

Received for publication August 13, 2019; accepted February 19, 2020 - © Salus Internazionale ECM srl - Provider ECM no 763

Correspondence

Aurea Lima, MD

ORCID: http://orcid.org/0000-0002-9779-0584

Google scholar: http://scholar.google.pt/citations?user=snyMf8QAAAAJ

Phone: +351 22 415 7178; +351 91 990 4845

E-mail: aurea.lima@chedv.min-saude.pt; aurea.lima@iucs.cespu.pt; aurealimamd@gmail.com
Introduction

The history of beauty is as old as mankind itself; nevertheless, the term “beauty” remains universally undefined. Nowadays, key properties such as clarity, symmetry, harmony and vivid color are elements of an attractive and beautiful appearance. Aesthetic Medicine (AM) comprises all medical procedures that aim to improve the physical appearance and satisfaction of patients, contributing to multidimensional elements, enhancing the personal development of patients affected by disease or otherwise, using non-invasive to minimally invasive cosmetic procedures. Therefore, AM is a new trend in modern medicine that emerges as a bridge between the gap of beauty and health. Appearance is the most public self-part; thus patients try to improve their (apparent) imperfections in order to increase their self-perception and quality of life. Bearing this in mind, AM may represent a valuable tool concerning one of the most well-known diseases of the 21th century: cancer. Cancer isn’t always a one-time event: it can be a chronic (ongoing) illness with important implications for individuals and societies. There is extensive evidence that cancer patients and cancer survivors need expert support in relation to psychological and social disease consequences, in part because of emotional well-being, directly related to self-esteem. In oncological patients, skin and subcutaneous tissue disorders can have different etiologies and severities.

Yet AM, as part of regular cancer care, has been disregarded even in non-life-threatening skin toxicities, mainly because of lack of evidence-based implementation of guiding principles on AM practice by the medical profession. Consequently, as cancer care evolves, it is vital that multidisciplinary team members modify their approach to incorporate AM during all stages of cancer management. This review aims to provide an overview of AM as part of regular oncological management, particularly in cancer survivors and specifically in non-life-threatening hyperpigmentary skin toxicities associated with anticancer drugs.

Hyperpigmentation disorders

Disorders of cutaneous discoloration comprise a large group of skin conditions characterized by an increase of chromophores of melanotic origin (hyperpigmentation) and/or an increase of nonmelanotic chromophores (hyperchromias). Hyperpigmentation is the darkening of natural skin color, usually due to an melanin deposition (hypermelanosis) in the epidermis and/or dermis, but may also be caused by dermis deposition of endogenous or exogenous pigments, such as hemosiderin, iron, or heavy metals. Hyperpigmentation is a feature of a multitude of clinical conditions, ranging from normal variations of skin color to acquired and inherited syndromes, and is one of the most frequent reasons for aesthetic medical consultation. Regardless of whether the enhanced pigmentation area is localized or widespread, both situations share the same basic pathogenesis. Though not yet fully elucidated, it seems to involve inflammatory mediators that stimulate epidermal melanocytes to disrupt the skin's basal layer leading to the dermal deposition of pigments and subsequent macrophage activation. Local skin pigmentation may be associated with intrinsic, skin anatomic features (e.g. mucous membranes, skin creases, flexural or intertriginous areas, palms or soles, and face). However, a suspected local drug reaction may be due to other extrinsic factors that act in combination with drugs. Some reactions may represent post-inflammatory hyperpigmentation rather than a local drug effect, especially if drug administration is associated with trauma, skin irritation, or a local allergic reaction. There are several causes of diffuse hyperpigmentation, the most common are metabolic. Although not as common, many cases of malignancy, melanoma in particular, have been known to cause diffuse hyperpigmentation. As previously highlighted, skin hyperpigmentation is not harmful, but it negatively affects psychosocial, physical and financial health, treatment adherence and, most importantly, optimal cancer therapy administration. Moreover, it can cause significant cosmetic disfigurement and become a persistent psychosocial burden for the patient, due to the limited efficacy of available treatments.

Anticancer drugs-induced skin hyperpigmentation

Drug-induced skin hyperpigmentation is a non-life-threatening disorder that can present in several forms and degrees of severity.
Emerging Goals of Aesthetical Medicine in Hyperpigmentary Skin: an Oncological Perspective

Table 2 - Skin drug-induced hyperpigmentation presentation forms and degrees of severity

<table>
<thead>
<tr>
<th>Presentation forms</th>
<th>Severeities (In accordance to Common Terminology Criteria for Adverse Events - CTCAE - guidelines13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serpentine supravenous hyperpigmentation</td>
<td>Grade 1: Mild, <10% body skin area; asymptomatic or mild symptoms.</td>
</tr>
<tr>
<td>Flagellate hyperpigmentation or flagellate erythema</td>
<td>Grade 2: Moderate, >10% body skin area; minimal, local or noninvasive intervention indicated.</td>
</tr>
<tr>
<td>Reticulate hyperpigmentation</td>
<td></td>
</tr>
</tbody>
</table>

Serpentine supravenous hyperpigmentation is a pigmentary pattern that follows an underlying vein proximal to an infusion site that is thought to result from cytotoxic agent extravasation after endothelial damage, causing epidermal basal hyperpigmentation and dermal melanin incontinence16. Unlike tender, clot-forming thrombophlebitis, serpentine supravenous hyperpigmentation is characterized by underlying vessels that are patent16. Flagellate hyperpigmentation, results from multiple linear, erythematosus or hyperpigmented streaks arise at sites of scratching or other minor skin traumas. Generalized pruritus is common and may precede the eruption. Reticulate hyperpigmentation is uncommon; patients present a diffuse reticulate hyperpigmentation predominantly located on the trunk and lower extremities and pruritus is often present17.

In over a century, a plethora of anticancer drugs and techniques used to treat a wide array of cancers have emerged7, some of which are responsible for the occurrence of skin hyperpigmentation.

Chemotherapy

Chemotherapy is the most widely used anticancer drug in the field of oncology18. Its administration may lead to many cutaneous findings, ranging from hyperpigmentation skin disorders to infectious complications18. Hyperpigmentary skin disorders are common in patients receiving cytotoxic drugs, particularly alkylating agents and antitumor antibiotics (Table 3) but different clinical features can be observed (Table 4). Fluorouracil is one of the most ubiquitous drugs used in oncology19. It is often associated with skin hyperpigmentation, diffusely or locally (in sun-exposed areas)16,20,21. Clinically, localized hyperpigmentation on normally pigmented extremities (hands and feet) and tongue have been reported20,21. It has been postulated that these hyperpigmentation reactions may be considered as post-inflammatory on sites subjected to repeated friction. Despite topical fluorouracil infusions are the most commonly associated with serpentine hyperpigmentation, this can also be caused by other drugs, such as vinorelbine, daunorubicin, fotemustine, vincristine and docetaxel, and in combination regimens, such as CHOP16,21,22. A less common side effect caused by topical fluorouracil and other chemotherapy agents, such paclitaxel and cytarabine, is the reticulate hyperpigmentation17. Localized skin disorders caused by anticancer drugs such as fluorouracil derivate tegafur can induce well-circumscribed, brown to black, macular pigmentation that appears on palms, soles, nails and glans penis; localization in these cases is unexplained23. Other examples include thiopeta, ifosfamide and doctetaxel (sites of skin adhesive placement); cisplatin, hydroxyurea and bleomycin (sites of trauma or pressure); and daunorubicin (sun-exposed areas)24,25.

Local hyperpigmentation observed in skin adhesive placement areas may reflect drug secretion in sweat. Bleomycin is mostly responsible for flagellate hyperpigmentation appearance26. Pigmentary changes caused by bleomycin, cyclophosphamide, busulfan and doxorubicin have a predilection for flexural areas and palmar creases24. Ifosfamide hyperpigmentation can occur in flexural areas, dorsal and plantar feet surfaces, extensor surfaces of fingers and toes, on the scrotum and occasionally, on large trunk areas; it may also occur under occlusive dressings24. Mitoxantrone hyperpigmentation can affect face, hands dorsum and nails. Daunorubicin may induce annular or polycyclic scalp pigmentation24. Like topical fluorouracil, topical mechloethamine can induce hyperpigmentation in treated areas.

Many systemic drugs induce diffuse skin pigmenatry reaction patterns. As examples, busulfan causes a generalized skin darkening, called “busulfan tan”, that can mimic cutaneous manifestations of Addison’s disease. Pegylated liposomal doxorubicin can induce a macular hyperpigmentation over the trunk and extremities, including palms and soles27. This reaction has not been described with non-encapsulated doxorubicin.

<table>
<thead>
<tr>
<th>Table 3 - Anticancer drugs inducing skin hyperpigmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
</tr>
<tr>
<td>Bleomycin</td>
</tr>
<tr>
<td>Busulfan</td>
</tr>
<tr>
<td>Carmustine</td>
</tr>
<tr>
<td>Cisplatin</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
</tr>
<tr>
<td>Daunorubicin</td>
</tr>
<tr>
<td>Docetaxel</td>
</tr>
<tr>
<td>Doxorubicin (non-encapsulated)</td>
</tr>
</tbody>
</table>
In order to identify any underlying skin hyperpigmentation causes or any factors that may hinder treatment, it is essential to obtain a detailed medication history. Allergic reactions to cosmetics and/or fragrance-based products may contribute to post-inflammatory hyperpigmentation. So, it is important to consider patch testing when allergy is suspected. Seriated lesion photos are essential in hyperpigmentation clinical management, especially when patients think treatment is not working. A biopsy may be recommended to elucidate dermal versus epidermal versus other processes that may be occurring. It is also important to assess any personal and/or family history of skin hyperpigmentation. For example, if the patient has been previously treated for skin hyperpigmentation, a history of what therapies were used and how the patient responded will be useful. This information will impact the decision-making process on which drugs and AM procedures to use. Reassurance and time are also essential elements of a treatment regimen that are sometimes overlooked by clinicians and the patient. Before treatment, the clinician should inform the patient about: indications, effects and side effects (pain, redness, ecchymosis, stinging sensations and swelling, and local inflammation, usually disappearing in 24 hours). It is also recommended to obtain the patient’s signed consent.

Table 4 - Clinical features of anticancer chemotherapeutic drugs inducing skin hyperpigmentation

<table>
<thead>
<tr>
<th>Anticancer drug</th>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleomycin</td>
<td>• Linear, flagellate bands
 • Hyperpigmentation over joints, striae and/or palmer creases</td>
</tr>
<tr>
<td>Busulfan, Cyclophosphamide, Procarbazine</td>
<td>• Diffuse hyperpigmentation of the skin and mucous membranes
 • Pigment localized to nails, palms/soles or teeth</td>
</tr>
<tr>
<td>Cisplatin, Docetaxel, Doxorubicin, Idarubicin</td>
<td>• Hyperpigmentation overlying the small joints of the hands and involving palmar creases, palms/soles and oral mucosa, including the tongue
• Hyperpigmentation of the face, neck, lower arms, palms, and nails; pigmentation can also be accentuated in areas of pressure or trauma
 • Pigmentations along veins used for infusions
• Hyperpigmentation in sun-exposed areas
• Pigmentations along veins used for infusions
• Hyperpigmentation in sun-exposed areas and hair</td>
</tr>
<tr>
<td>Fluorouracil</td>
<td>• Hyperpigmentation in sun-exposed areas
 • Pigmentations along veins used for infusions</td>
</tr>
<tr>
<td>Hydroxyurea</td>
<td>• Hyperpigmentation over pressure points and on the back
• Hyperpigmentation in sun-exposed area</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>• Hyperpigmentation in sun-exposed areas and hair</td>
</tr>
</tbody>
</table>

Hyperpigmentation due to hydroxyurea may affect the face, neck, lower arms, palms, and nails; pigmentation can also be accentuated in areas of pressure or trauma. This pressure-induced hyperpigmentation is also reported for cisplatin. Methotrexate may rarely induce a diffuse, brown skin hyperpigmentation. Procarbazine has been associated with generalized melanosis.

Novel Antineoplastic Therapy Strategies

Novel antineoplastic therapy strategies have evolved to exploit some molecular abnormalities detected in certain cancer types. Collectively they are referred to as molecularly targeted agents and include drugs which interfere with signal transduction, such as inhibitors of tyrosine kinases and their receptors, as well as immunotherapy. Many of these agents, particularly those interfering with signal transduction, are associated with prominent and sometimes dose-limiting dermatologic complications. Despite skin hyperpigmentation, cutaneous ADRs induced by these drugs include erythema, diffuse papulopustular acneiform eruption, hand-foot skin reaction, paresthesias, tingling, burning, rash/desquamation, hair depigmentation, alopecia, dry skin, scrotal erythema/ulceration, subungual splinter hemorrhages, dermatitis, pruritus, acne, folliculitis, skin exfoliation and photosensitivity.

Aesthetical medicine in anticancer drug-induced skin hyperpigmentation

In order to identify any underlying skin hyperpigmentation causes or any factors that may hinder treatment, it is essential to obtain a detailed medication history. Allergic reactions to cosmetics and/or fragrance-based products may contribute to post-inflammatory hyperpigmentation. So, it is important to consider patch testing when allergy is suspected. Seriated lesion photos are essential in hyperpigmentation clinical management, especially when patients think treatment is not working. A biopsy may be recommended to elucidate dermal versus epidermal versus other processes that may be occurring. It is also important to assess any personal and/or family history of skin hyperpigmentation. For example, if the patient has been previously treated for skin hyperpigmentation, a history of what therapies were used and how the patient responded will be useful. This information will impact the decision-making process on which drugs and AM procedures to use. Reassurance and time are also essential elements of a treatment regimen that are sometimes overlooked by clinicians and the patient. Before treatment, the clinician should inform the patient about: indications, effects and side effects (pain, redness, ecchymosis, stinging sensations and swelling, and local inflammation, usually disappearing in 24 hours). It is also recommended to obtain the patient’s signed consent.
As regards oncologic patients and anticancer drug skin hyperpigmentation, usually these reactions are resolved with drug discontinuation\(^4\). However, the course also may be prolonged over months to years or persist during the patient's lifetime\(^4\). Therefore, AM has a two-tier role in skin hyperpigmentation of oncologic patient: in prevention and in correction/treatment, in patients living with cancer and in cancer survivors, respectively\(^1,4\). Prevention strategies of skin hyperpigmentation due to anticancer drugs are based on three major principles: 1) Use of cosmetics suitable for each patient’s skin type and condition, adapted for reactive and sensitive skin, and, if possible, legislation provides for their use in cancer patients. More and more brands are available on the market with these specifications; 2) Photoprotection and sun avoidance, because sunlight is a major trigger of melanin synthesis; and 3) Avoidance of inflammatory processes in the skin, since inflammation seems to be crucial in the pathophysiology of skin hyperpigmentation. When the skin is already hyperpigmented and anticancer drug discontinuation is not possible, a fourth strategy can be undertaken: 4) The use of cosmetic camouflage\(^35\). With certain patients, intermittent application of single topical skin-whitening agents may be helpful. Correction/treatment strategies of skin hyperpigmentation aim to reduce hyperpigmentation without causing undesirable hypopigmentation or irritation in surrounding normally pigmented skin, which is the most frequent treatment side effect. The treatment approach involves the four strategies mentioned above plus a variety of pigment-reduction methods, including topical skin-whitening agents, chemical peels, mesotherapy, microneedling and laser technologies\(^33\) (Table 5).

However, each patient is a different case; there are patients for whom there is no contraindication for any of the options and there are others to whom none of the options can be applied. In patients living with cancer and undergoing treatment with anticancer drugs, despite prevention strategies, only so-called “complementary treatment” can be used. In patients living with cancer and under follow-up, without concomitant anticancer drugs, some first- and second-line treatments can be applied six months after anticancer drug treatment has ended. Intermediate and deep chemical peels, laser and intense pulsed light therapies should only be used twelve months after the end of anticancer drug treatment. Depending on the patient, all strategies can be used in cancer survivors, i.e., people who have had cancer in the last five years and are no longer on anticancer drugs.

It is important to emphasize that each case is different, recommendation of one treatment over another will depend on the skin condition of each patient at a given time, on previous procedures performed and on achieved results.

Topical skin-whitening agents

Topical skin-whitening agents are the mainstay skin hyperpigmentation treatment\(^36\). Most target tyrosinase, which converts L-tyrosine to L-3,4-dihydroxyphenylalanine, is the rate-limiting enzyme in the melanin synthesis pathway\(^37\). Skin-whitening agents commonly used include: hydroquinone (HQ), azelaic acid (AA), mequinol, kojic acid (KA), N-acetyl-4-cystaminylphenol, glycolic acid (GA), tretinoin or one of its precursors, adapalene, arbutin, and licorice

<table>
<thead>
<tr>
<th>First-line treatment</th>
<th>Second-line treatment</th>
<th>Complementary treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical skin-lightening agents</td>
<td>Chemical peels</td>
<td>Photoprotection(^53)</td>
</tr>
</tbody>
</table>
| • Triple combination therapy: Hydroquinone + Retinoids + Steroids\(^53,54\) | In combination with topical treatment\(^60,61\):
 • Glycolic acid 20-70%
 • Salicylic acid 20-30%
 • Trichloroacetic acid 10-25%
 • Jessner’s solution | **Cosmetic camouflage**\(^70,72\) |
| • Azelaic Acid, Kojic Acid and Mequinol\(^45\) | **Mesotherapy**\(^63\) | |
| • Cosmeceuticals can be added as a second topical, but also can be used as monotherapy. | **Microneedling**\(^65\) | |
| | **Laser therapy** | |
| | • Particular attention to skin type, laser fluency and type\(^66,68\) | |
| | • Recent studies show benefit with Q-switched Nd:YAG\(^68\) | |
| | **Intense pulsed light therapy**\(^67\) | |

\(^*\)Patients can develop irritation/allergy to triple combination therapy, either due to retinoid dermatitis or due to hydroquinone sensitivity\(^4\). In this case dual combinations should be used.

Table 5 - General guidelines for treatment of anticancer drugs inducing skin hyperpigmentation
extract36,37. Because of possible topical skin-whitening agents ADRs, patient education is crucial.

Mono-formulations

HQ is one of the most effective melanogenesis inhibitor and is widely used for melanosis treatment and other hyperpigmentary disorders. It is a naturally occurring hydroxyphenolic compound whose depigmenting activity may partly be related to the compound ability to inhibit tyrosinase activity, thereby competing for tyrosine oxidation in active melanocytes. HQ concentrations in topical preparation vary from 2 to 4\%38. A higher concentration is most effective but may be associated with more severe irritant contact dermatitis, hypopigmentation of surrounding skin, and rarely, exogenous ochronosis39. ADRs of HQ include erythema, stinging and desquamation39. AA is a naturally occurring, nonphenolic, nine-carbon dicarboxylic acid that competitively inhibits tyrosinase. In randomized trials, AA 20\% cream or 15\% gel was found to be more effective than HQ 2\% and equally effective as HQ 4\%40,41. Common AA ADRs include erythema, burning, scaling and pruritus40. Mequinol (4-hydroxyanisole, hydroquinone monomethyl ether) is a phenolic agent that acts as a competitive inhibitor of tyrosinase. ADRs of mequinol include stinging, erythema, desquamation and pruritus42. KA, a chelating agent produced by *Aspergillus oryzae*, blocks the conversion of tyrosine to melanin by chelating copper at tyrosinase active site43. In addition to local irritation, KA may cause allergic contact dermatitis44. Tretinoin (all-trans retinoic acid) stimulates keratinocyte turnover, decreases melanosome transfer, and allows greater penetration of other active ingredients45. Therefore, topical tretinoin, typically used at 0.1\%, improves mottling and hyperpigmented lesions46. Retinoid selection may depend on prescriber and/or patient preference. Recent research suggests that tazarotene 0.1\% cream is more effective than adapalene 0.3\% gel for post-inflammatory hyperpigmentation management47. Treatment with topical retinoids should not be started or continued during pregnancy, due to its teratogenicity but there is no direct evidence that topical retinoids cause congenital malformations48.

Combination formulations

Topical agents combination include dual and triple combination of skin-whitening agents49. As first-line therapy, a triple-combination cream containing HQ 4\%, tretinoin 0.05\%, and flucinolone acetonide 0.01\% can be applied because it appears to have greater efficacy than HQ alone or combinations of two components, although it was associated with greater toxicity50,51. In this regime, cream should be applied nightly for 8 to 24 weeks or until the desired whitening effect is achieved. In a split-face study, a gel containing HQ 2\%, GA 10\% and KA 2\% was more effective when compared to a cream containing HQ 2\% plus GA 10\%52. If a triple-combination cream is not available, dual combinations may be used as an alternative49. HQ 4\% plus GA 10\%, antioxidants and sunscreens appear to be effective in decreasing the degree of pigmentation31. In a small trial, 15 of 20 patients improved with twice-daily application of combination product versus 2 of 15 using sunscreen alone51. A combination of mequinol-tretinoin has been evaluated for solar lentigines treatment42, and was found to be as effective as HQ 3\% in the reduction of facial lentigines pigmentation49. However, the complete clearance of lesions was uncommon with either treatment. Moreover, AA may offer an optimal benefit when combined with a topical corticosteroid. Recent studies suggest that sequential therapy of AA 20\% and clobetasol 0.05\% was associated with more significant improvement than AA 20\% monotherapy41. Many other HQ-based formulations are commercially available. They may contain a variety of agents, such as GA, antioxidants, broad spectrum sunscreens, retinol and moisturizers. However, the efficacy of these products in skin hyperpigmentation treatment has not been adequately evaluated in randomized trials.

Novel cosmeceutical products

Numerous studies have been performed over the last decade, highlighting the use of other products, such as prostaglandin E2 inhibitors (PgE2I), rucinol, tranexamic acid (TXA), vitamin C and methimazole as novel therapies for treating skin hyperpigmentation. SMA-432, a PgE2I, has been developed in recent years and have shown promising efficacy when compared to HQ 4\%54. A randomized, double-blind, half-face study was conducted in female subjects with moderate-to-severe facial hyperpigmentation, SMA-432 exhibited a dose-dependent improvement in hyperpigmentation, and patient satisfaction was high55. Rucinol (4-n-butyresorcinol), a derivative of resorcinol that inhibits tyrosinase and tyrosine-related protein-1 activity, has been evaluated56. In a split-face randomized trial including 32 women with moderate-to-severe melasma, a lower pigmentation score was achieved on those treated with rucinol serum56. In another randomized trial including 23 Korean women with melasma, liposome-encapsulated rucinol 0.1\% cream was more effective than the vehicle in lowering the melanin index57. TXA is a plasmin inhibitor and lysine analog that has been shown to inhibit UV-induced pigmentation in animal models58. In a split-face study including 21 women with melasma, topical TXA plus sunscreen was not more effective than vehicle plus sunscreen in decreasing pigmentation59. Further well-designed clinical trials are needed to evaluate the efficacy and safety of TXA. Vitamin C and methimazole are under investigation for hyperpigmentation management.

Chemical peels

Chemical peels may be indicated for moderate-to-severe skin hyperpigmentation that has not responded to skin-whitening agents60,61. A chemical peel is a skin treatment in which a topically applied caustic solution creates smooth, rejuvenated skin by way of an organized repair process and exfoliation60,61. In a simplified way, there are three types of chemical peels: superficial, medium-depth and deep. The effect of any peel reaches the dermis, directly or indirectly and to varying depths, where regeneration processes are induced to a greater or lesser degree, depending on the molecule(s) used and the application procedure. To varying degrees, most peels cause the same types of histological changes, the clinical results of which lead to a more or less rejuvenating effect on all or part of the skin60,61. For skin hyperpigmentation...
management, superficial chemical peels are generally effective with few ADRs60,61. Standard options include GA 20-70%, salicylic acid 20-30%, trichloroacetic acid 10-25%, or Jessner's solution60,61. Topical skin-whitening agents are frequently used before and between peels62. Pretreatment with a course of HQ 4% topically is thought to improve outcomes and appear superior to topical retinoids as priming agents when used in combination with chemical peels62. Moreover, any patient using topical retinoids should discontinue use for 7 days prior to peel. They may continue to use a noncomedogenic, sun protection factor moisturizer64. Daily post-peel care is essential to achieve optimum results and avoid complications. Therefore, it is important to avoid extreme temperatures, saunas and direct exposure to the sun or UV radiation. The chemical peeling response varies, and caution must be used to avoid potential problems such as hypopigmentation and post-inflammatory hyperpigmentation.

Mesotherapy
Mesotherapy is a non-surgical, minimally invasive method of drug delivery that consists of multiple intradermal or subcutaneous injections of a mixture of compounds, a “mélange”, in minute doses63. Commonly used techniques are point by point, nappage, epidermic, TXA and others63. Mesotherapy is claimed to have a wide array of applications and has been recently reputed as an effective treatment of skin hyperpigmentation. There is no standardized formulation for mesotherapy, and ingredients vary depending on indications. For skin hyperpigmentation treatment as monotherapy or in combination, active formulations include: arbutin, aminoethylphosphinic acid, retinyl palmitate, morus alba extract, oxyresveratrol, licorice extract, malic acid, glutathione, vitamin C, vitamin E, TXA and others63. Although the results are claimed to be very good, the use of such compounds as mesotherapy needs more evidence and published data. In general, one to three sessions in acute cases, such as sports injuries, and 10-15 with maintenance sessions every 6 months or once a year for chronic conditions, may be required. Alcohol- or oil-based substances should not be used for mesotherapy because of the risk of cutaneous necrosis63. After treatment the following should be avoided: extreme temperatures, saunas and direct exposure to the sun or UV radiation. Make-up can be used as of the day after.

Microneedling
More recently, the application of active medications has been proposed, by piercing the skin with needles: microneedling65. To this end, a polyethylene roll wedged by stainless and sterile steel needles, symmetrically aligned in rows, totaling 190 units, performs back and forth movements guided by a uniform pattern of petechiae65. This technique can improve prodrug uptake and clinical response, reducing incubation time. Depigmentation agents have been used according to skin hyperpigmentation, but little has been said about the exact mechanism of microneedling and the skin-whitening effect65. Nevertheless, literature studies reported that microneedling alone, with a 1.5mm needle length and without active medication addition, can cause skin-whitening65. New controlled studies are required to clarify the action mechanism of microneedling on skin hyperpigmentation.

Laser technologies
Laser light absorption, i.e. light amplification by radiation stimulated emission, is determined by chromophores such as water, melanin and hemoglobin, which have specific wavelength absorption profiles66. However photothermal, photochemical or photomechanical effects may occur when the skin absorbs laser energy66. Cutaneous depth laser energy penetration is dependent upon absorption and scattering. As such, to control cutaneous target destruction without significant injury to surrounding tissue, appropriate lasers and intense pulsed light (IPL) have been developed for specific skin targets or lesions66.

Laser and IPL systems are constantly evolving and have facilitated the treatment of benign vascular and pigmented lesions, unwanted hair, tattoos, hypertrophic scars, keloids, rhytides, as well as dermatologic diseases such as psoriasis and vitiligo67. Cutaneous pigmented lesions are frequent targets of quality-switched lasers, which are highly effective in whitening or eliminating benign epidermal and dermal pigmented lesions such as drug induced hyperpigmentation, with limited injury to adjacent normal tissue68. Short pulsed quality-switched and picosecond systems commonly used to treat pigmented lesions today include Nd:YAG (532nm and 1.064nm), ruby (694nm), and alexandrite (755nm) lasers68. Unlike lasers, nonlaser filtered flash lamp IPL devices emit polychromatic, noncoherent and noncylindrical light (420–1.400nm) with varying pulse durations68. The wider range of light can be absorbed by a variety of chromophores, making IPL less selective than lasers. As such, cutoff filters are often used to narrow the emitted spectrum of wavelengths and render the device more specific68. IPL devices have been used to treat benign pigmented lesions including anticaner drug induced hyperpigmentation, with significant lesion improvement observed after a series of monthly treatments66. Adverse events of these techniques included erythema, scaling, dryness, stinging or burning, edema, and hypo- or hyperpigmentation68. Until more definitive studies are available, the decision whether or not to try laser or IPL therapy should be made on a case-by-case basis66. Refinement of existing devices and the development of novel technologies will continue to expand the role of lasers and IPL in the future, enabling practitioners to deliver the most cutting-edge and sophisticated treatments for a wider range of cutaneous conditions66. Despite first-line or second-line treatment options, photoprotection and cosmetic camouflage are complementary strategies of skin hyperpigmentation treatment procedures66.

 Photoprotection
Regardless of the treatment performed, patients with hyperpigmentation disorders will benefit from sun avoidance and photoprotection, which involves avoiding the peak hours of sunlight, seeking shade, wearing protective clothing, and using a broad-spectrum sunscreen with a higher sun protection factor, preferably containing physical blockers such as titanium dioxide or zinc oxide, on a daily basis61.

Aesthetic Medicine / Volume 6 / Nº1 / January - March 2020 45
Cosmetic camouflage
Camouflage techniques may be helpful in facial skin hyperpigmentation management. Physical-blocking opaque sunscreens have the dual benefit of camouflaging hyperpigmentation and preventing photo-induced darkening. Many of these physical blockers now come in tinted blends to assist with camouflaging. Additionally, many find that the use of make-up helps to even out skin tone. Several brands providing heavy coverage are available. The usual method of application involves simple techniques to apply a fine layer of camouflage cream, followed by a setting powder. Although the products contain sun protection, additional (oil-free) sunscreen can be applied under camouflage make-up.

Maintenance therapy
Skin hyperpigmentation correction/treatment is challenging, because of its chronic, persistent, and relapsing nature, particularly in dark-skinned individuals. Therefore, and despite the removal of provoking factors, sun avoidance and sun protection are essential for achieving and maintaining depigmenting treatments results. The intermittent application of topical whitening single agents or triple-combination creams may also be helpful in preventing recurrence in patients who achieve complete or near-complete clearance after continuous treatment. During the maintenance phase, a topical preparation can be applied once a day, two to three times per week.

Concluding remarks
During the past years, many new drugs have been introduced in clinical cancer treatment. However, clinicians have been facing cutaneous ADRs associated with these approaches and AM has been developed as a complementary measure. Cutaneous ADRs may occur at different intensities, and a lack of adequate treatment may lead to anticancer drug discontinuation, which would significantly decrease patient quality of life. One of the most frequent cutaneous ADRs induced by anticancer drugs, particularly by chemotherapy agents, is skin hyperpigmentation and its occurrence should be expected in each patient. Skin hyperpigmentation does not threaten the patient's life or health per se, however it does negatively affect patient quality of life. Controlling skin toxicity may also reduce the need to modify the dose or even interrupt treatment. An awareness of both psychological and physical effects of these cutaneous complications is important in the medical management of oncological patients. In general, early treatment of skin hyperpigmentation yields good outcomes. Nevertheless, and despite the extensive therapeutic arsenal available for skin hyperpigmentation treatment, clinical control of this melanodermia is extremely challenging. Treatment duration is a challenge as it is usually long lasting and involves a maintenance phase that can last a lifetime. Further challenges include clinician or patient reluctance to use some agents or interventions, a failure to identify and avoid contributing factors, and/or insufficient attention paid to disease psychosocial aspects. Furthermore, various treatment modalities for skin hyperpigmentation have not been evaluated in high-quality studies and no studies include oncological patients. In most cases, evidence for efficacy of topical or physical therapies is based upon small series of patients or single-case reports and clinical experience. Therefore, the efficacy of topical skin-whitening agents, chemical peels and laser technologies in anticancer drug-induced skin hyperpigmentation treatment has not been established. Additionally, the maintenance of adequate skin hygiene, hydration and the use of sunscreen are of great value and scope.

By combining the past, present and future of AM, we can incorporate this perspective and ultimately deliver better oncological patient care. Compliance, safety, and oncological patients' quality of life should remain primary goals. Therefore, early recognition through a good anamnesis and clinical examination can minimize and/or reverse skin hyperpigmentation, thus minimizing aesthetic impact. Therefore, medical-aesthetic approach protocols should be developed for application when skin hyperpigmentation occurs as a result of treatment with anticancer drugs. Treatment algorithms should help guide proper treatment which, as one gains experience, can be modified and smoothly adapted to particular patients. However, in some cases, cutaneous toxicity will become the crux of a clinical problem requiring professional cooperation. Therefore, additional clinical and preclinical research in this field is urgently required, along with close collaboration between AM clinicians and oncologists, in order to achieve a better understanding of the pharmacodynamics of anticancer drugs and optimal patients management.

Conflicts of interest
The authors declare that they have no conflicts of interest.

Acknowledgments
The authors do not have any commercial interest in the subject of study or any source of financial or material support.
REFERENCES

In memory of Dr. Ahmed Bourra

It is with great regret we announce the loss of the colleague and friend Dr. Ahmed Bourra, Dermatologist, Founder and President of the Moroccan Association of Aesthetic Medicine, esteemed professional and long-time friend.

He had been also the President of the Union Internationale de Médecine Esthétique - UIME from 1995 to 1997, to which his Society belongs since 1986. He has died after fougthing hard against disease for two years.

We will remember him always for his spirit and his innate vitality. We will miss his smile and his true friendship. SIME is closed to his wife Rachida and his sons Hyatt and Karim.
Courses and Congresses

Due to the Covid-19 related medical emergency, this page is suspended until further notice